
An Introduction to
Microcontrollers and

Software Design

Name _____________________

MRGS Technology Electronics

Available online from www.techideas.co.nz

 B. Collis - Mount Roskill Grammar School 2003-2009
This work is licensed under the Creative Commons Attribution-Non-commercial-Share Alike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0. The licensor permits others to copy, distribute and transmit the work. In return, licensees may
not use the work for commercial purposes — unless they get the licensor's permission. The licensor permits others to distribute derivative works
only under a license identical to the one that governs the licensor's work.

 ii

Table of Contents
Introduction to Microcontroller Electronics ...4

Computers and Microcontrollers ..5
What exactly is a Microcontroller ...6

What you do when learning to program ...7
Achievement Objectives from the NZ Curriculum ..8

Hardware - The AVR Microcontroller ...9
Power Supplies..9
AVR Programming ...10
Breadboard ..10
Simple AVR circuit ...11
Circuit description ..12
AVR programming cable..12

Introduction to writing programs using Bascom-AVR IDE..13
Reading and Writing using flowcharts..14
Input and Output Control..15
Sending Morse code ..16
Microcontroller ports: write a Knightrider program using 8 LED’s17
Multiple LEDs - Traffic lights exercise ..18
Multiple LEDs - 7 Segment Displays..19
Different types of switches ...20
First input device – a single push button switch...21
BASCOM and AVR Assignment ..23
Words you need to be able to use correctly when talking about programming24
A Bit about Numbers..25

Programming Codes of Practice ..26
Programming Template ...27
Variables..28
The BASCOM-AVR Simulator..29

Control statements – IF THEN...31
Connecting and programming multiple switches..31
Reading multiple switches in software ...32
Using flowcharts to help solve problems..33
Using IF-THEN to control which parts of a program happen..................................37
Debounce ..36

More Interfacing ...38
Analogue to Digital Conversion..39
Reading an LDR’s values in Bascom...41
Temperature measurement using the LM35 ..43
Keypad Interfacing ...44
Alternative keypad interface...44
Controlling high power loads (outputs)...45
Parallel Data Communications...46
LCDs (Liquid Crystal Displays) ..47
Connecting an LCD to a 40pin AVR...48
Don’t delay...51

Programs as solutions: understanding algorithms and flowcharts54
Planning Sequence for an AVR project..54
One Page Brief ..55
One Page Brief ..56
Algorithm Development Worksheet..57
Example Brief...58
Algorithm Planning Example..59
Example Brief...60

 iii

Algorithm Development Example...61
Glue Gun Timer Flowchart ...62
Multiplication Algorithms ..64
Algorithm exercises..68
LCD programming exercises..69
LCD programming exercises..69
Scrolling Message Assignment..70
Strings Assignment ..71
ASCII Character Table...73
ASCII Assignment..74
Time...77
Sounding Off ..81

System and Software Design...84
Understanding how simple systems work ..84
Problem Decomposition Example ..85
Statecharts...87
Token Game – Statechart Design Example...90

Serial Communications ..95
RS 232 Serial Communications ...97
Serial IO using Inkey() ...102
Introduction to I2C..103
Real Time Clocks...105
DS1307 RTC..107

Arrays ..112
Computer Programming detail ...115

AVR Internals – how the microcontroller works..116
Interrupts..120

Polling versus interrupt driven architecture ..122
Timer/Counters ..123

PWM - Pulse Width Modulation ...126
AVR Clock/Oscillator..129

Assignment – Maths In The Real World...130
Math Assignment - Part 1 ..133
Math Assignment - Part 2 ..134
Math Assignment - Part 3 ..135
Math Assignment - Part 4 ..136
Math Assignment - Part 5 ..137
Math Assignment - Part 6 ..138
Bascom Keyword Reference..139

AVR Development Boards we can use ..141
AVR Development Board 2..144
ATMEGA Development Board 3 ..147
ATMEGA16/32 Microcontroller Pin Functions and Connections..........................149
ATMEGA16/32 40pin DIP package– Pin Connections...150

4

Introduction to Microcontroller Electronics

The course is an introductory course for students in design using microcontrollers; it covers both
hardware interfacing and software design.

Microcontrollers are a common electronic building block used for many solutions to needs throughout
industry, commerce and everyday life.

They are found inside aircraft instruments.

 They are used extensively within cellular phones, modern
cars,

domestic appliances such as stereos and washing machines

and in automated processes through out industry

5

 Computers and Microcontrollers
A microcontroller is very much everything that you would find inside a PC's case, but on a
smaller scale. There is a processor, temporary memory for data (the RAM) and memory for
programs (the ROM).

However don't think that because a microcontroller is smaller than a PC that it is the same
comparison as between a real car and a toy car. The microcontroller is capable of carrying
out millions of instructions every second. And there are billions of these controllers out there
in the world doing just that. You will find them inside cars, stereos, calculators, remote
controls, airplanes, radios, microwaves, washing machines, industrial equipment and so on.

6

 What exactly is a Microcontroller
As with any electronic circuit the microcontroller circuit has three parts,
the INPUT, PROCESS AND CONTROL.

The input circuitry converts the real world into the electronic; the microcontroller processes the
electronic signals; the output circuitry converts the electronic into the real world.

Inside the microcontroller
there is however another
level of conversion.

The micro has input code,
output code and
instructions (process code),
as well as variables to store
data.

The input code converts
the electronic signals to
data (numbers). The
process code manipulates
the data. The output code
converts the data
(numbers) to electronic
signals. Variables are
locations in memory that
data is stored in.

So in a microcontroller circuit that creates light patterns based upon sounds the control process is
SOUND to ELECTRICITY to DATA

Processing of the DATA (numbers)
DATA to ELECTRICITY to LIGHT

7

What you do when learning to program
1. Get to know the hardware you are using

a. Get a copy of the datasheet
b. Learn about the power supply required
c. Learn how to configure and connect to input and outputs
d. Find out about the different types of memory and amount of each
e. Find out about the speed of processing

2. Get to know the language and the IDE you are using
a. Learn to access the helpfile (e.g. highlight a word and press F1)
b. The language has syntax, specific grammar/word rules you must use correctly
c. The IDE (Integrated Development Environment) has special commands and built in

functions you must know and use: $crystal, $regfile, config, alias, const, port, pin
d. Learn common I/O functions: set, reset, debounce, locate, LCD, GetADC
e. Understand the limitations of and use variables: byte, word, long, single, double)
f. Use constants instead of numbers in the code (e.g. waitms timedelay)
g. Get to know the control functions: Do-Loop (Until), For-Next, While-Wend, If-Then (Else)
h. Get to know about text and math functions (read help file, write a few simple programs

using the simulator)
3. Develop Algorithms (written plans for the process the program must carry out)

a. Have a goal in mind for the program – use specifications from the brief
b. Plan your i/o by drawing a system block diagram
c. Determine variables and constants required in the program
d. Determine the state of all the I/O when the program begins
e. Write the algorithm - Identify and describe the major processes the micro must do.

4. Draw Flowcharts or Statecharts (visual diagram for the process the program must carry out)
a. Identify the blocks/states that will be used
b. Use arrows to link the blocks and visualise control processes and program flow

5. Develop code from the flowcharts
a. The outer looping line is replaced with a do-loop
b. Backwards loops are replaced with do-loop do-loop-until, for-next, while-wend
c. Forward loops are generally replaced with If-Then-EndIf
d. Replace the blocks with actual commands
e. Layout the code with correct indentations(tabs)
f. Develop an understanding of subroutines and when to use them
g. Experiment by purposely putting in errors and seeing their effects

This is not a step by step process as you get to know about one area you get to know about others at
the same time. Depth of knowledge and understanding comes from LOTS OF EXPERIMENTATION!

8

 Achievement Objectives from the NZ Curriculum

Technological Practice
Brief – one page brief, with conceptual statement and specifications
Planning – algorithms, flowcharts, pcb design, case design

Outcome Development – functioning circuit, microcontroller program, PCB, case

Technological Knowledge
Technological Modelling – flowcharts, statecharts,, bread-boards

Technological Products

Technological Systems - i/o/process model, programming

Nature of Technology
Characteristics of Technological Outcomes
Characteristics of Technology – microcontrollers as the basis for modern technologies

Key Competencies
Thinking –algorithm design, flowchart development, debugging program, fault finding circuits
Relating to others – work in pairs/groups,
Using language symbols and texts – programming language syntax, reading schematics
Managing self –use workshop equipment safely, use time wisely
Participating and contributing

Technological Skill development
Breadboard circuits
Program microcontrollers
Accurately describe problem solving processes (algorithms),
Logically plan software solutions using flowcharts and statechart diagrams

Become methodical in solving and debugging problems,

9

Hardware - The AVR Microcontroller
A microcontroller is a general purpose electronic circuit; it is a full computer inside a single integrated
circuit (IC or chip). Normally with an IC like the TDA2822M amplifier or LM386 opamp its function
and its pins are fixed, you have no control over what they do, and therefore limited control over how
to connect them.
With a microcontroller however you are in control, you decide:

• what the function of the IC is
• what most of the pins are used for (inputs or outputs)
• and what external input/output devices these pins are connected to.

If you want an egg timer, a car alarm, an infrared remote control or whatever, it can all be done with a
microcontroller.

A commercial range of microcontrollers called ‘AVR’ is available from ATMEL (www.atmel.com) We
will start by using the ATTINY26, it has 2kbytes of Flash for program storage, 128 bytes of Ram and
128 bytes of EEPROM for long term data storage

Of the 20 pins:

• VCC(5) & GND(6,16) are dedicated for power, VCC is positive voltage, e.g 4.5V
• AVCC (15) is a special voltage for measuring analogue voltages (connect to VCC/5V).
• There are two I/O ports accessible portA and portB (larger AVR microcontrollers have

more ports) A port is a group of 8 I/O pins which can be controlled together
• PB0(1), PB1(2), PB2(3), PB7(10) are pins used to upload the programs.

(you cannot use PB7 as an I/O pin, but PB0,PB1,PB2 can be used with care)

 Power Supplies

Most microcontrollers work off low voltages from 4.5V to 5.5V, so it can be run off batteries or a dc
power pack, voltages in excess of these will destroy the micro. An L in an AVR model number means
it can run at an even lower voltage. Some only run at 1.8V, so check the datasheet!

10

 AVR Programming

Microcontrollers, such as the AVR, are controlled by software and they do nothing until they have a
program inside them.

The AVR programs are written on a PC using the BASCOM-AVR.
This software is a type of computer program called a compiler, it comes from www.mcselec.com. It is
freeware so students may download it and use it freely at home.

The AVR is connected to the PC with a 5 wire cable.

 Breadboard

Often in electronics some experimentation is required to prototype (trial) specific circuits. A prototype
circuit is needed before a PCB is designed for the final circuit.

A breadboard is used to prototype the circuit. It has holes into which components can be inserted
and has electrical connections between the holes as per the diagram below.

Using a breadboard means no soldering and a circuit can be constructed quickly and modified easily
before a final solution is decided upon.

11

 Simple AVR circuit

Design the above circuit onto the breadboard diagram below

12

 Circuit description

• The 5 pin connector is for programming.
• The 100uF electrolytic capacitor is to reduce any variations in power supply voltage.
• The 10k is a pull-up resistor for the reset pin, a low on this pin will halt the microcontroller and

when it is held high the program will run from the beginning.
• The 1N4148 is a protection diode that will stop high voltages possibly damaging the

microcontroller (it is only required on the reset pin because all the other microcontroller pins
have built in diodes).

• There is an LED with a 1k ‘current limit’ resistor. An LED needs only 2V to operate so if
connected without a resistor in series too much current would flow and destroy the LED. With
2V across the LED, there will be 3V across the resistor, and the current will be limited to (V/R)
3/1000 = 3mA.

• The 0.1uF capacitors are to stop electrical noise possibly interfering with the microcontrollers
operation.

 AVR programming cable

A five wire cable is needed to connect the AVR circuit to a PC.
It connects the PC’s parallel port to the AVR circuit. One end has a DB25M connector on it (as in this
picture)

The other end has a 10 pin connector attached to it (as in this picture)
The 10 wires are arranged in 5 pairs
Put heatshrink over the connections to protect them.

13

Writing programs using Bascom-AVR IDE

BASCOM-AVR is four programs in one package, it is known as an IDE (integrated development
environment); it includes the Program Editor, the Compiler, the Programmer and the Simulator all
together. A free version is available online.

After installing the program there are some set-up options that need changing.

From the menu select.
OPTIONS – PROGRAMMER and select Sample Electronics programmer. Choose the parallel tab
and select LPT-address of 378 for LPT1 (if you only have 1 parallel port on the computer choose
this), also select autoflash.
The following are not absolutely necessary but will help you get better printouts.
OPTIONS – PRINTER change the margins to 15.00 10.00 10.00 10.00
OPTIONS – ENVIRONMENT – EDITOR change the Comment Position to 040.

The Compiler

The command to start the compiler is F7 or the black IC picture in the toolbar.
This will change your high-level BASIC program into low-level machine code.
If your program is in error then a compilation will not complete and an error box will appear. Double
click on the error to get to the line which has the problem.

The Programmer

When you have successfully compiled a program pressing F4 or the green IC picture in the toolbar
starts the programmer. If no microcontroller is connected an error will pop up. If the IC s connected
then the BASCOM completes the programming process and automatically resets your microcontroller
to start execution of your program.

14

 Reading and Writing using flowcharts

shower

 raining ? Y
N

eat breakfast

play basketball

eat dinner

walk home play playstation walk home

walk to school

talk to friends

go to class

getup

go to bed

start stop

task or operation

 decision? Y
N

input or output

Direction of flow
 school day ? Y

N

Flowchart symbols

Daily routine flowchart

15

 Input and Output Control
Learning Intentions: Learning to link parts of a flowchart with actual program code

Flash1LEDv1.bas
“Flash an LED rapidly on and off”

‘ Flash1LEDv1.bas
$regfile = "attiny26.dat” ‘ bascom needs to know our micro
$crystal = 1000000 ‘ bascom needs to know how fast it is going
Config Porta = Output ‘make these micro pins outputs
Const Flashdelay = 150 ‘ preset how long a wait will be
Do ‘start of a loop
 Porta = &B10000000 ‘ LED 7 on

 Waitms Flashdelay ‘wait a preset time

 Porta = 0 ‘all LEDs off

 Waitms Flashdelay ‘wait a preset time

Loop ‘return to do and start again
End

This is a typical first program to test your hardware
Every line of the code is important.
$regfile=”attiny26.dat”, Bascom needs to know which micro is being used as each micro has
different features
$crystal=1000000, Bascom needs to know the speed at which our microcontroller is setup internally
so that it can calculate delays such as waitms properly (1 million operations per second)
Config porta=output, each I/O must be configured to be either an input or output; it cannot be both
at once.
Const Flashdelay=150, ‘constants’ are used in a program, it is easier to remember names and it is
useful to keep them all together in one place in the program (this is a code of practice).
DO and LOOP statements enclose code which is to repeat; when programming it is important to
indent (tab) code within loops; this makes your code easier to follow (this is a code of practice).
Porta = &B10000000 make porta.7 high (which will turn on the LED connected to that port) and make
all the other 7 output pins on that port low
Porta = 0 make all 8 pins on porta low (which will turn off any LEDs connected to that port)
Waitms flashdelay wait a bit, a microcontroller carries out operations sequentially, so if there is no
pause between turning an LED on and turning it off the led will not be seen flashing

Playing around develop your understanding, carry out AT LEAST these to see what happens
What happens if Const Flashdelay is changed to 1500, 15, 15000
What happens if $crystal = 10,000,000 or 100,000 instead of 1,000,000
What happens if your change the $regfile to "attiny13.dat”
What happens if one of the waitms flashdelay statements is deleted
What happens when the two waitms flashdelay statements are deleted
Change porta=&B10000000 to set porta.7

16

 Sending Morse code
Write a program to send your name in Morse code

• A dash is equal to three dots
• The space between the parts of the same letter is equal to one dot
• He space between letters is equal to three dots
• The space between two words is equal to seven dots

start

wait 7 dots

send 'c'

send 's'

wait 3 dot

send 'l'

wait 3 dot

‘ MorseMeV1.bas
$regfile = "attiny26.dat” ‘ bascom needs to know our micro
$crystal = 1000000 ‘ bascom needs to know how fast it is going
Config Porta = Output ‘ make these micro pins outputs
Morseled alias porta.7 ‘ the name morseled is easy to remember
Const dotdelay = 150 ‘ preset how long a dot is
Do ‘start of a loop

‘letter c
Set morseled ‘ on
Waitms dotdelay ‘ wait 1 dot time
Waitms dotdelay ‘ wait 1 dot time
Waitms dotdelay ‘ wait 1 dot time
Reset morseled ‘ off
Waitms dotdelay ‘ wait 1 dot time
…
‘letter l
 …
 …

Loop ‘return to do and start again

17

 Microcontroller ports: write a Knightrider program using 8 LED’s
Ports are groups of 8 I/O pins.

Connect another 7 LEDs (each needs an individual 1k current limit resistor) to your
microcontroller and write a program to flash all 8 LEDs in a repeating sequence e.g.
'led1, 2, 3, 4, 5, 6, 7, 8. 7, 6, 5, 4, 3, 2, 1, 2, 3...

Use the following code to get
started
Porta=&B10000000
Pause flashdelay
Porta=&B01000000
Pause flashdelay
Porta=&B00100000

As a second exercise rewrite the program so that three Leds turn on at once
Sequence = LED1, LED12, LED123, LED234, LED345, LED456, LED567, LED678, LED78, LED8,
LED78, LED678…

18

 Multiple LEDs - Traffic lights exercise

Connect 3 sets of LEDs to the microcontroller; each set has 1red, 1 orange and 1 green LED.
Write a program that sequences the LEDs in the order A,B,C,A…
Fill in the sequence table below to start with (make it easier by only showing changes)

 1 2 3 4 5 6 7 8 9
A - Red Off On Off
A - Or Off On Off
A - Grn On Off

B - Red On
B - Or Off
B - Grn Off On

C - Red On
C - Or Off
C - Grn Off
Delay to
next step

1m 30s 2s 1m

19

 Multiple LEDs - 7 Segment Displays

 Each bar in the seven segment display
is a single LED.
This schematic for a single display
shows how all the cathodes are
connected together (some displays are
CC common cathode and some are CA
common anode

In this diagram a seven segment LED
display is shown connected to 8 pins of
a port. To display the number five,
segments a,b,d,f &g must be on. and
the code &B01001001 must be written
out the port. Calculate the other values

required to show all the digits on the
display and determine their
corresponding values in Hex and
Decimal.

Display Segments
ON

Segments
OFF

PORT
Binary

Port
 Hex

Port
Decimal

0
1
2
3
4
5 a,c,d,f,g b,e &B01001001 &H49 73
6
7
8
9
A
b
c
d
E
F

20

 Different types of switches

Various types of switches can be connected to microcontrollers for various purposes:

Key switches

So that only authorised people can operate
a device

Micro switches

Used inside moving machinery

Magnetic or Reed switch

Useful for parts that open and close

Tilt or Mercury Switch

Useful to sense movement or something falling over

Rotary Switch

Can be used to set various positions

Tact switch

21

 First input device – a single push button switch
Learning Intentions: Continue to learn to link plans for a program (e.g. flowchart) with actual program,

 develop skills in programming simple switch input connected to a microcontroller.

A ‘pullup’ resistor is essential in this circuit, as when the switch is not pressed it connects the input pin
to a known voltage, if the resistor was not there then the input pin would be ‘floating’ and give
unreliable readings

In this circuit the switch is connected without a
pull-up resistor. The input pin of the
microcontroller has no voltage source applied to it
and is said to be ‘floating’; the microcontroller
input voltage will drift, sometimes be high (5V),
sometimes low (0V) and is sensitive to touch and
static leading to very unreliable results.

In this circuit the 10k
resistor pulls the
microcontroller input pin
high (to 5V) making the
input reliable when the
switch is not pressed.

When the switch
is pressed the
voltage goes low
(0V).

22

Flash1LEDv2.bas

“When the switch is pressed flash an LED rapidly on and off”

' Flash1ledv2.bas
$crystal = 1000000
$regfile = "attiny26.dat"

Config Porta = Output
Config Pinb.6 = Input ‘input uses pin not port

RedSw Alias Pinb.6 ‘ hardware alias
Const Flashdelay = 150

Do
Loop Until Redsw = 0 ‘ wait until switch presses

Do

 Porta = &B10000000 ‘ LED 7 on

 Waitms Flashdelay

 Porta = 0 ‘all LEDs off

 Waitms Flashdelay

Loop
End

The input pin pinb.6 is normally pulled up by the resistor to 5V we call this a ‘one’ or ‘High’, when the
switch is pressed it connects the pin to Ground or 0V, this is called a ‘zero’ or ‘low’

23

 BASCOM and AVR Assignment

Learning goal:
Students should become independent learners able to find support to help their own learning

The AVR is a microcontroller from which manufacturer________________

The URL for their website is: ________________________

Download the specific datasheet for our microcontroller (the summary version not the full version) and
print the first 2 pages and put them in your journal.

The Program Memory size is _______ The RAM size is _________The EEPROM size is _________

The number of I/O lines is __________ and they are arranged in _______ports

BASCOM-AVR is a compiler from _____________________

The URL for their website is: ________________________

Download the latest version of the BASCOM AVR demo and install it on your PC.

There are a number of application notes on the website for the AVR
Describe what AN128 is about

__

__

__

There are a number of other great resource websites for the AVR and BASCOM
Find 3 websites on the internet that have useful resource information on BASCOM
List the websites URL and what you found there

__

__

__

__

__

__

24

Words you need to be able to use correctly when talking about programming

computer
microcontroller
hardware
software
memory
RAM
variable
data
byte
word
program
algorithm
flowchart
BASIC
port
code
upload
sequence
command
repetition
do-loop
for-next
subroutine
gosub
return

25

 A Bit about Numbers

When we want to turn all the pins of a port on or off at one time there is are easy ways to do it.

• If all port pins are at high then the LED’s will be on

o e.g. portc=&B11111111
o or portc = &HFF
o or portc=255
o or set portc.7, set portc.6, set portc.5…. to set portc.0

• If all port pins are at low then the LED’s will be off

o e.g. portc=0

Binary and Decimal Numbers

Sometimes it is easier to directly use decimal numbers to control the
LED’s on a port. Note that we represent a binary number using the
prefix &B(there isn’t prefix for decimal)

Convert &B01010101 to decimal __

Convert &B10101010 to decimal __

Hexadecimal Numbers
Hexadecimal is really just an abbreviated way of representing binary numbers.

Note the first 16 hex numbers 0 to F
&B00000000 = &H0 = 0
&B00000001 = &H1 = 1
&B00000010 = &H2 = 2
&B00000011 = &H3 = 3
&B00000100 = &H4 = 4
&B00000101 = &H5 = 5
&B00000110 = &H6 = 6
&B00000111 = &H7 = 7
&B00001000 = &H8 = 8
&B00001001 = &H9 = 9
&B00001010 = &HA = 10
&B00001011 = &HB = 11
&B00001100 = &HC = 12
&B00001101 = &HD = 13
&B00001110 = &HE = 14
&B00001111 = &HF = 15

26

Programming Codes of Practice

Three steps to help you write good programs

1. Name each program with a meaningful name and save it into its own directory
2. Use a template to setup your program from the start
3. Add lots and lots and lots of comments as you go

You must layout programs properly and comment them well to gain achievement

Saving Programs

When saving programs you need a good quality directory / folder structure, so use a different folder
for each program:

• it keeps the files that BASCOM generates for your program in one place
• this helps you find programs quickly when you want to
• it is less confusing
• it is good practice
• save your program at the beginning when you start it, this helps guard against teachers that

like to turn the computers off unexpectedly.

Organisation is everything

As with structuring and organising your
folders you also need to structure and
organise your program code. Messy
code is hard to understand and it is
surprising how fast you forget what you
did; and then when you want to refer to
it in the future you find that you cannot
understand what you have written! The
use of a template or pattern to follow
will help discipline your code writing.
Break the code up into the following
sections,

1. title block
2. program description
3. compiler directives
4. hardware setups
5. hardware aliases
6. initialise hardware
7. declare variables
8. initialise variables
9. initialise constants
10. main program code
11. subroutines.

A useful hint about codes of practice from xkcd.com

27

 Programming Template
'--
' 1. Title Block
' Author:
' Date:
' File Name:
'--
' 2. Program Description:

'--
' 3. Compiler Directives (these tell Bascom things about our hardware)
$regfile = "attiny26.dat" 'the micro we are using
$crystal = 1000000 'the speed of the micro

'--
' 4. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb =Input 'switches on portB

' 5. Hardware Aliases
Led0 alias portb.0
' 6. initialise ports so hardware starts correctly
Porta = &B11111111 'turns off LEDs

'--
' 7. Declare Variables

' 8. Initialise Variables

' 9. Declare Constants

'--
' 10. Program starts here
Do

Loop
End 'end program

'--
' 11. Subroutines

28

 Variables
Learning Intention:
1. Be able to use the simulator to quickly test an idea to see if it works,
2. Develop an understanding of how a computer stores data in memory and calls them
variables

What is a Variable?

A variable is the name we give to a place set aside in the microcontroller’s memory to store a
particular piece of data.
When data is stored in memory we say we are storing it in a variable.
Variables can be data read from inputs, places where you can save results of calculations for other
parts of your program to use or values to control outputs.

The microcontroller has two places to store variables RAM and EEPROM. RAM is temporary storage,
when the power is lost so is the data stored in RAM, this is called volatile memory. EEPROM is
permanent storage (non-volatile) it remains when the power is removed from the microcontroller.

If you wanted to measure the difference between two temperatures you would store them in RAM and
use a simple formula to subtract one from the other. If you wanted to record temperature
measurements over a long period of time and use that data then you would collect it and store it in
the EEPROM so that it would not be lost if the power was removed.

Using Variables

In a calculator with several memory locations each is given a name such as A,B,C,D,E,F,X,Y.M. etc.
The name of the memory location has nothing to do with what you are using it for and it is up to you
to remember what was stored in each location. In a microcontroller each memory location is given a
name by the programmer. This means it is much easier for you to remember what is in the memory
location and easier to use within your program.

This program generates a random number from 0 to 5 and stores it

' DiceV1.bas
$sim
$crystal = 1000000
$regfile = "attiny26.dat"
Config Porta = Output
Config Portb = Input

Dim Throw As Byte

Do
 'generate a random number from 0 to 5
 Throw = Rnd(6)
Loop
End
The line Dim Throw As Byte refers to our variable called Throw. Throw is the name of a location in
memory (RAM) that will be used to store the random number.
Every variable must be dimensioned before it can be used.

Compile the program and then open the simulator (F2), select the variable THROW from the
variables list and use F8 to step through the program to see the numbers generated by the program.

29

 The BASCOM-AVR Simulator

Double click in
the yellow area
under the word
VARIABLE to

select the
variables you
want to watch.

Press F8 to step
through the

program and see
what happens at

each step.

30

The simulator is an ideal tool for testing small parts of a program to see if you achieved what
you wanted to. We will use to explore different types of variables
Here is some code to show off a few BASIC commands. Copy this program into BASCOM
and compile it and see if you can understand what is happening and why.
' ShowComandsV1.bas

$crystal = 1000000
$regfile = "attiny26.dat"

Config Porta = Output
Config Portb = Output
Config Pinb.6 = Input

.

'dimension variables
Dim Byte1 As Byte
Dim Byte2 As Byte
Dim Word1 As Word
Dim Int1 As Integer
Dim Single1 As Single
Dim Single2 As Single

Byte1 = 12
Byte1 = Byte1 + 3
Incr Byte2

Addition

Byte2 = Byte1 / 10

Division - a byte can only represent numbers
form 0 to 255 so division truncates (IT DOESN’T
ROUND)

Byte2 = Byte1 Mod 10

MOD gives you the remainder of a division

Byte2 = Byte1 * 150

This gives the wrong answer

Word1 = Byte1 * 150

This gives the right answer

For Byte2 = 1 To 8
 Rotate Byte1 , Left
Next

Rotate is like multiplying and dividing by ____?

Int1 = 500
For Byte2 = 1 To 8
 Int1 = Int1 - 100
Next

Want negative numbers then use Integer or
Long

For Single1 = 0 To 90
Step 5
 Single2 =
Deg2rad(single1)
 Single2 = Cos(single2)
Next

WANT DECIMALS USE Single or Double

End

Make sure you put an END to your program or it
will continue on and potentially cause problems
with your projects

31

Control statements – IF THEN
Already the first control statement DO-LOOP has been introduced the next is the IF_THEN

 Connecting and programming multiple switches

Often the microcontroller is required to read multiple
input switches and then control something based upon
the switch inputs. These switches might be connected to
an assembly line to indicate the presence of an item, to
indicate if a window is open or to the landing gear of a jet
aircraft to indicate its position.
When connecting a switch a pull-up resistor is required
however…

The AVR has switchable internal pull-up resistors
These can be activated from within software; this means you don’t have to connect a
separate resistor; however you still have to activate it. Note that by default it is not
activated.

Config Pind.2 = Input
Set portd.2 ‘activate internal pull-up

32

 Reading multiple switches in software

 sw2_pressed? Y
N

 sw1_pressed? Y
N

 sw3_pressed? Y
N

 sw4_pressed? Y
N

 sw5_pressed? Y
N

read5SwsV1

toggle LED1

toggle LED2

toggle LED3

toggle LED4

toggle LED5

'Config 5 input switches
Config Portb = Input

'5. Alias names for the hardware
Sw_A Alias Pinb.1
Sw_B Alias Pinb.2
Sw_C Alias Pinb.3
Sw_D Alias Pinb.4
Sw_E Alias Pinb.5'when reading inputs
use pins

' 10. Program starts here
Do

 If Sw_A = 0 Then Toggle Portb.1

 If Sw_B = 0 Then Toggle Portb.2

 If Sw_C = 0 Then Toggle Portb.3

 If Sw_D = 0 Then Toggle Portb.4

 If Sw_D = 0 Then Toggle Portb.5

Loop ' loop back to beginning
End 'end program

A common method of using switches within a program is to poll the switch (check it regularly
to see if it has been pressed). When you run this program you will notice that sometimes the
LED changes and sometimes it doesn't and while the switch is held down the led brightness
is dim.

The complication causing this is the microcontrollers speed; it is running at 1MHz (million
clocks per second) and so after the code is compiled the micro can test all 5 switches
approximately 50,000 times or more every second. If you press and release a switch as fast
as you can the micro will still test it a thousand times while you have it pressed down. This
means that the LED is actually flashing on and off while the button is being held down, you
can see this by observing the LED carefully as when the switch is held down the LED will
dim.

33

There are important problems with this program:
1. If the do loop takes a short amount of time then the microcontroller will return to

checking the switch before it has been released and it could be counted detected
hundreds or thousands of times.

2. If the do loop takes a long time then the switch could be pressed and returned to
normal and the program would never know.

3. The electrical contacts within the switch generally do not make perfect contact as they
close. They actually bounce a few times. Contact bounce is a real problem when the
microcontroller is running at 1,000,000 operations per second, as it can sense each
bounce and interpret that as more than one press of the switch.

 Using flowcharts to help solve problems

Debouncing switches is all about making sure that the program does not recognise more
switch activations than it should either due to contact bounce or due to the user taking time to
release the switch.
Solution stage 1:
 Wait for 250mS when switch pressed

ALGORITHM:
1. Check if a switch is pressed
2. if not exit
3. if it is then wait for 250mS and exit
VARIABLES REQUIRED:
sw_value holds the number of the sw
pressed

The problems with this solution
include: the program waits for 250mS
even if the user releases it before the
250mS is up

 sw_pressed? Y
N

sw_value=0

wait 250ms

sw_value = 1

return

debounce1sw

Solution stage 2:
Wait for 35mS if switch pressed (to
allow for contact bounce) then check
the switch until the user releases it

ALGORITHM:
1. Check if a switch is pressed
2. if not exit
3. if it is then wait for 35mS
4. Check the sw again and if released
exit

The problem is that it still waits for the
user to release the switch, and then
the micro can do nothing else during
that time.

sw_value=0

debounce1sw

 sw_pressed? Y
N

return

sw_value = 1

 sw_pressed? Y
N

wait 35ms

34

Solution stage 3:
 We only want to detect the switch when it closes and not again until it is released and
pressed again and wait for 35mS to avoid detecting any contact bounces

ALGORITHM:
1. Check if a switch is pressed, if it is not pressed then exit
2. check if it is still pressed from last time, if so then do not indicate it and exit
3. wait for 35mS and
4. see if it is still pressed, if so output that this switch was pressed and remember it

VARIABLES REQUIRED:
sw_value holds the number of the sw pressed,
sw_mem is used to remember which switch was pressed

debounce

 sw_pressed? Y
N

wait 35ms

sw_value = 0

return

sw_mem=0
sw_value=0

 sw_mem = 1 N

Y

sw_value = 1
sw_mem = 1

Checkswitches:
 If Sw = 0 Then ‘switch pressed?
 If Sw_mem = 1 Then ‘still pressed?
 Sw_value = 0 ‘ if still pressed no new value
 Exit Sub ‘exit
 Else if new press
 Waitms 35 'wait for any contact bounce
 Sw_value = 1 ‘sw 1 is pressed
 Sw_mem = 1 ‘remember isw=1 t for next time
 End If
 Else ‘no switch pressed
 Sw_mem = 0 ‘clear any switch
 Sw_value = 0
 End If
Return

35

Solution stage 4:

When you think through the logic of the previous solution you think it might work, however
there are still problems to solve when there are multiple switches. These problems occur
when multiple switches are pressed, especially if one is pressed and while it is held down
another is pressed and released. It seems that it is necessary to have a separate variable for
each switch and each switch memory. This may seem like a lot of memory however it can be
achieved using only 1 bit for each. With 4 switches 1 byte would be need, for 8 switches 2
bytes.

check_sws

wait 35ms

return

wait 35ms

return

return

 sw1=0 y
n

 sw_mem = 5 n

y

 sw1_mem = 1 n

y

sw3 =0

sw5 =0

sw2 =0

sw4=0

 sw1=0 y
n

 sw1=0 y
n

sw1_value = 0
sw1_value = 0
sw1_mem = 0

sw1_value = 1
sw1_mem = 1

sw1_value=0
sw1_mem = 0

sw5_value = 0
sw5_mem=0

sw5_value = 0
sw5_value = 0
sw5_mem = 0

sw5_value = 1
sw5_mem = 1

\

This may or may not be the best solution, however it is important to understand that before
jumping on the keyboard to write code problems should be explored fully using some sort of
paper method.

This process is a god example of what counts towards excellence credits for Planning (and
also the new Modelling) Achievement Standards.

36

 Bascom Debounce

Bascom has a built in debounce command which automatically checks the state of the switch
to see that it has been released before it will be counted again.

Do
 Debounce Sw_A , 0 , A_sub , Sub
 Debounce Sw_B , 0 , B_sub , Sub
 Debounce Sw_C , 0 , C_sub , Sub
 Debounce Sw_D , 0 , D_sub , Sub
 Debounce Sw_E , 0 , E_sub , Sub
Loop ' keep going forever
End
'--
' 13. Subroutines
A_sub:
 Toggle Portb.1
Return
…
E_Sub:
 Toggle Portb.5
Return

Debounce has two major ideas attached to it:
1. it checks the input pin to see if it has changed then waits for 35mSec and checks it again
to see if it is still changed, otherwise it ignores it.

2. if the switch has been pressed the subroutine is carried out after the 35mS debounce time;
however if the user holds the switch down when the program loops around it will not go back
to the subroutine again until the switch has been released and then pressed again.

37

 Using IF-THEN to control which parts of a program happen
An important code of practice when programming is to maintain a logical structure to your
code. This makes your programs easier to read, understand and to debug. Code is broken
up into large chunks and each chunk put into its own subroutine.
With the Knightrider program we can reduce the complexity by changing it to use two
subroutines, one to go left and one to go right.

start

flashdelay=1000

direction=left Y
N

right sequence

wait flashdelay

left sequence

Dim Flashdelay As Word
Dim Led As Byte
Dim Direction As Bit

Direction = 0
Flashdelay = 1000

Do
 If Direction = 0 Then
 Gosub Nextright
 Else
 Gosub Nextleft
 End If
 Waitms Flashdelay
Loop
End

'Subroutines
Nextright:
Return

Nextleft:
Return

 ‘Subroutine to handle the next right led to be lit.
Nextright:
 Incr led ‘next right led
 Portb=255 ‘leds off
 if led= 0 then reset portb.0
 if led=1 then reset portb.1
 …
 If led=7 then
 reset portb.7
 Direction=0 ‘change direction
 End if
Return

Nextleft:
 decr led ‘next right led
 Portb=255 ‘leds off
 if led= 0 then
 reset portb.0
 direction=1
 end if
 if led=1 then reset portb.1
 …
 If led=7 then reset portb.7
Return

38

More Interfacing
Having completed some introductory learning about interfacing and programming
microcontrollers it is time to learn more detail about interfacing.

Switches

Analogue to digital conversion using

LDRS
and Thermistors

Boosting the power output

to make
sound

and drive small
inductive loads

Parallel interfaces to

Liquid crystal displays

and seven segment displays

Serial interfaces to

Real Time Clocks

and computer RS232 ports

39

 Analogue to Digital Conversion

In the real world we measure things in continuously varying
amounts.

The golf ball is some distance from the hole. It might be 11
metres from the hole, it might be
213.46236464865465437326542 metres from the hole.

The airplane might have an
altitude of 11,983 metres or
perhaps 1,380.38765983
metres.

A computer works in binary (or digital) which means it has the ability to sense only two
states. For example the golf ball is either in the hole or not. The plane is either in the air or
not.

When we want to measure the actual distance in binary we must use a number made up of
many digits e.g. 101011010 (=346 decimal) metres.

When we need to convert an analogue measurement of distance to digital we convert the
decimal number to a binary number.

A to D Conversion

We need to be able to determine measurements of more than on and off, 1 and 0, or in and
out. To do this we convert a continuously varying analogue input such as distance, height,
weight, lighltlevel etc to a voltage.

Using the AVR this analogue value can then be converted to a binary number within the
range 0 to 1111111111 (decimal 1023) within the microcontroller. We can then make
decisions within our program based upon this information to control some output.

Light level sensing

We will measure the amount of light falling on a sensor and use the LED's on the
microcontroller board to display its level.

The LDR
The LDR (Light Dependant Resistor) is a semiconductor device that can be used in circuits
to sense the amount of light. Get an LDR and measure the resistance when it is in the dark
and measure the resistance when it is in bright sunlight. Record the two values.

40

Voltage dividers review

When you studied ohms law you also studied the use of voltage dividers. A voltage divider
is typically two resistors across a battery or power supply.

A voltage divider is shown here. With the 5volts applied to the
circuit the output voltage will be some proportion of the input
voltage.

If the two resistors are the same value then the output voltage
will be one_____ (quarter/half/third) of the input voltage; i.e. it
has been divided by ______ (2/3/4). If we change the ratio of
the two values then the output voltage will vary.

With R1 larger than R2 the output voltage will be low and with
R2 larger than R1 the output voltage will be high.

Replace one of the resistors with an LDR, we know that the
resistance of an LDR changes with the amount of light falling on
it.

If the light level is low, and then the resistance is _____
(high/low), therefore the output voltage is _____ (low/high).

If the light level is high then the resistance is _____(high/low),
therefore the output voltage is _____ (low/high).

Now this is what we call an analogue voltage. Analogue means
that the voltage varies continuously between 0 and 5 volts.

 But computers only know about digital voltages 0 volts or 5 Volts.
We need to convert then the analogue voltage to a digital number
that the computer can work with. We do that with the built in ADC

(Analogue to Digital Converter) inside the Microcontroller.

AVR ADC Connections

On a micro such as the ATMEga8525, Port A has dual
functions inside the microcontroller. Its second function is that
of input to the internal ADC. In fact there are 8 separate
inputs to the ADC one for each pin.

41

 Reading an LDR’s values in Bascom

Now we will write some code to make use of the LDR.
Note that the variable used in this program is of size WORD i.e. 2bytes (16 bits)
This is because the values given from the analogue to digital converter are bigger than 255.
Note also a new programming structure select-case-end select has been used.

'--
' 1. Title Block
' Author: B.Collis
' Date: 7 Aug 2003
' Version: 1.0
' File Name: LDR_Ver1.bas
'--
' 2. Program Description:
' This program displays light level on the LEDs of portc
' 3. Hardware Features:
' LEDs as outputs
' An LDR is connected in a voltage divider circuit to portA.0
' in the dark the voltage is close to 0 volts, the ADC will read a low number
' in bright sunlight the voltage is close to 5V, the ADC will be a high value

' 4. Software Features:
' ADC converts input voltage level to a number in range from 0 to 1023
' Select Case to choose one of 8 values to turn on the corresponding LED
' 1023, 895, 767, 639, 511, 383, 255, 127,

' --
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m8535.dat" ' the micro we are using

'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Pina.0 = input ' LDR
Config Portd = Output 'LEDs on portD
Config Adc = Single , Prescaler = Auto
Start Adc
' 7. Hardware Aliases
' 8. initialise ports so hardware starts correctly
' must not put a high on the 2 adc lines as this will turn on the micros
' internal pull up resistor and the results will be erratic
Porta = &B11111111 'turns off LEDs
Portb = &B11111111 'turns off LEDs
Portc = &B11111100 'turns off LEDs
Portd = &B11111111 'turns off LEDs

'--

42

' 9. Declare Constants
'--
' 10. Declare Variables
Dim Lightlevel As Word
' 11. Initialise Variables
'--
' 12. Program starts here
Do
 Lightlevel = Getadc(0) ' number from 0 to 1023 represents the light level
 Select Case Lightlevel
 Case Is > 895 : Portc = &B01111111 'turn on top LED in bright light
 Case Is > 767 : Portc = &B10111111
 Case Is > 639 : Portc = &B11011111
 Case Is > 511 : Portc = &B11101111
 Case Is > 383 : Portc = &B11110111
 Case Is > 255 : Portc = &B11111011
 Case Is > 127 : Portc = &B11111101
 Case Is < 128 : Portc = &B11111110 'turn on bottom LED in dark
 End Select
Loop ' go back to "do"

End 'end program
'--
' 13. Subroutines
'--
' 14. Interrupts

43

 Temperature measurement using the LM35

The LM35 series are precision integrated-circuit temperature sensors, whose
output voltage is linearly proportional to degrees Celsius temperature.

The usual temperature sensor that
comes to mind is the Thermistor
however thermistors are not linear but
logarithmic devices as shown in this
graph. If you do want to use a
thermistor then try putting a resistor in
parallel with it to make it more linear,
however it will not be linear over its
whole range.

The LM35 varies linearly over its range with typically less than a ¼ degree of
error. The voltage output varies at 10mV per degree. Connect the LM35 to
5V, ground and one analogue input pin. The code is very straight forward

Dim Lm35 as word
Read_LM35:
 Lm35 = getadc(2)
 Locate 2,1
 Lm35 = lm35 / 2
 Lcd “temperature= ” ; LM35
return

The value increases by 2 for every increase of 1 degree. When connected to
5V a temperature of 25 degrees will give an output of 250mV and an ADC
reading of approximately 50 (the ADC range is 0 to 1024 for 0 to 5v).

44

 Keypad Interfacing

It is quite straightforward in Bascom to read a keypad, it handles all the hard work for us with
the built in function Getkbd().

Config Kbd = Portb
Dim kbd_data As Byte
Kbd_data = Getkbd() 'keybdb returns a digit from 0 to 15
LCD kybd_data

The connection to the microcontroller is straightforward as well,
just 8 pins.
Solder headers into the 8 pins of the keypad and 8 pins as
shown on the PCB

How do the 16 key keypad and the software work together?

The Keypad is arranged in a matrix of 4x4 and each row and
column are connected to the microcontroller.
Software:
The micro sets the rows as outputs and puts a low on those
ports. The columns are set as inputs, it reads the columns
and if any key is pressed there will be a 0 on one of the
columns. If there is a 0 then it reverses the situation with the
rows as inputs and columns as outputs and if there is a low
on one of the rows it has a valid keypress. The combination
of 0's is used to determine exactly which key is pressed.

 Alternative keypad interface

Knowing what you know about keypads and the ADC, how
would this keypad circuit work and how you would program it?

Bascom also has the ability to read a computer keyboard
connected directly to an AVR micro, check it out in the samples
directory installed with Bascom and the help file.

45

 Controlling high power loads (outputs)

ULN2803 Octal Darlington Driver

Typically a microcontroller I/O port can only drive 20mA into a load, so when more power is
called for a high power transistor or IC is required to drive multiple relays, solenoids, or high

power lamps.

This IC has 8 sets of Darlington-pair transistors inside it. The
Darlington pair configuration is when two transistors have their
collectors connected and the emitter of the first drives the base of
the other. This is a very high gain (amplification) device.

Connecting high power loads such as relays, solenoids, light bulbs

46

 Parallel Data Communications

Both internal and external communications with microcontrollers are carried out via buses,
these are groups of wires. A bus is often 8 bits/wires (byte sized) however in systems with
larger and more complex microcontrollers and microprocessors these buses are often 16, 32
or 64 bits wide.

Communication is carried out using 8 or more bits at a time. This is efficient as an 8 bit bus can
carry numbers/codes form 0 to 255, a 16 bit bus can carry numbers/codes from 0 to 65,535
and 32 bits can carry numbers/codes from 0 to 4,294,967,295. So data can move fairly fast on
a parallel bus.

Parallel communication is often used by computers to communicate with printers, because of
this speed. Only one printer can be connected to the parallel port on a computer, however
within the computer itself all the devices on the bus are connected all the time to the data bus.
They all share access to the data, however only the device that is activated by the address bus
wakes up to receive/send data.

47

 LCDs (Liquid Crystal Displays)
One of the best things about electronic equipment nowadays is the alphanumeric LCD
displays, these are not the displays that you would find on a laptop they are simpler single,
double or 4 line displays for text. These displays are becoming cheaper and cheaper in cost
check out www.pmb.co.nz for great prices on them. The LCD is a great output device and with
Bascom so very easy to use.

Some common commands are

• cls - clear the screen
• LCD "Hello" - will display hello on the

display
• lowerline - go to the lower line
• locate y,x - line and position on the line to

start text

Connecting an LCD to the microcontroller is
not difficult either.
There are 14/16 pins on the LCD

1. 0V
2. +5V
3. Contrast
4. RS - register select
5. R/W - read/not write
6. E - Enable
7. D0
8. D1
9. D2
10. D3
11. D4
12. D5
13. D6
14. D7
15. Backlight +
16. Backlight 0V

Most LCDs are set up so that they can
communicate in parallel with either 4 bits or 8
bits at a time. The faster system is 8 bits as all
the data or commands sent to the LCD happen
at the same time, with 4 bit operation the
data/command is split into 2 parts and each is
sent separately. Hence it takes twice as long.
The advantage of 4 bit operation is that the LCD
uses 4 less lines on the micro.

Another couple of lines are necessary, these
are control lines, RS , R/W, E. When using
Bascom the R/W line is tied permanently to 0V,
and the other two lines need to be connected to
the micro.

48

 Connecting an LCD to a 40pin AVR
This requires six I/O lines to be used on the micro.

Software to show off the display

'--
' 1. Title Block
' Author: B.Collis
' Date: 14 Aug 2003
' Version: 1.0
' File Name: LCD_Ver1.bas
'--
' 2. Program Description:
' use an LCD to display
' 3. Hardware Features:
' LCD on portc - note the use of 4 bit mode and only 2 control lines
' 4. Program Features:
' outer do-loop
' for-next control
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m8535.dat" ' the micro we are using
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD

49

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E =
Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4 'configure lcd screen
' 7. Hardware Aliases
' 8. initialise ports so hardware starts correctly
Porta = 0
Portb = 0
Portd = 0
Cls 'clears LCD display
Cursor On ' cursor displayed
'--
' 9. Declare Constants
Const Timedelay = 150
'--
' 10. Declare Variables
Dim Position As Byte
' 11. Initialise Variables
Count = 0
'--
' 12. Program starts here
Locate 1,5
Lcd “watch this”
Locate 2,6
Lcd “hello”
Waitms timedelay
Locate 2,1
Lcd “ “
Waitms timedelay
Locate 3,5
Lcd "hows that!!"
End
'--
' 13. Subroutines
'--
' 14. Interrupts

50

 FOR NEXT - Controlling the number of times something happens
If you want some text to move across the LCD.
You could do it the long way

Do
 Locate 2,1
 Lcd “Hello”
 Waitms timedelay
 Locate 2,1
 Lcd “ “

 Locate 2,2
 Lcd “Hello”
 Waitms timedelay
 Locate 2,2
 Lcd “ “

 Locate 2,3
 Lcd “Hello”
 Waitms timedelay
 Locate 23
 Lcd “ “
Loop

OR the smart way

Do
 For Position = 1 To 16 ‘for 20 character display
 Locate 2, position ‘move the cursor to second row
 Lcd “Hello” ‘display the text starting at this position
 Waitms Timedelay 'wait a bit
 Locate 2, position ‘move cursor back to
 Lcd “ “ ‘blank over the text to delete it
 Next
 For Position = 16 To 1, step -1 ‘for 20 character display
 Locate 2, position ‘move the cursor to second row
 Lcd “world” ‘display the text starting at this position
 Waitms Timedelay 'wait a bit
 Locate 2, position ‘move cursor back to
 Lcd “ ” ‘blank over the text to delete it
 Next
Loop
End 'end program

51

 Don’t delay

Do

 Waitms delaytime

 If swa=0 then decr delaytime

 If swa=0 then decr delaytime

 Toggle led
Loop

In this program two switches are used to change the rate at which an LED flashes.

There is a significant problem with this program however and it is that when the
microcontroller is waiting (wait delaytime) it cannot read a switch press.

As the delay increases this only becomes a bigger problem.

For this reason we do not use lengthy waitms statements in programs we find alternative
solutions to our problems

To begin to solve the issue you should understand
that a delay routine in a program is simply a loop
that repeats a large number of times e.g.

If this loop takes approximately 2 uSec
(microseconds) to complete and does it 1000 times
then it will give a delay of 2 mSec

How many times would the loop have to repeat to
delay:

1mS ?
10mS ?
1 Second ?
1 Minute ?

52

In a program like this it is acceptable to put in a very small delay. For example a press button
switch would typically be held down for much longer than 1mS so in this program there is a
1mSec delay used and we put the switch checking and 1mSec delay within our own longer
delay.
Note that we need to keep 2 variables, one is DelayCount which we increase and decrease
using the switches. The other is a temporary copy of it tDelay which is decremented within the
loops.

Delaycount=0

do

 tDelay=delaycount
 do

 if swa=0 then decr delaycount

 if swb=0 then incr delaycount

 waitms 1

 decr tdelay

 loop until tdelay = 0

 toggle led

loop

Although the main problem is fixed there are some other problems to fix:

1. When you keep incrementing delaycount eventually it will get to 65535, and another
increment will cause it to roll over or overflow back to 0.

2. Also when delaycount gets down to 0, another decrement will cause it to underflow to
65535!

3. The resolution (degree of change) of our delay program is not very good if we increase
or decrease each time by one. Perhaps a bigger increment/decrement value might be
more useful.

53

A neat feature for the Knightrider program would be if the speed of the sequence could be
varied.

So for the same reasons as before the switches need checking often; so after each led in the
sequence of LEDs, read the switches, wait a preset amount of time, if one button is pressed
increase the delay time, if the other button is pressed decrease the delay time.
The switches should be checked at least every 1mS so that they can detect user input.

To do this we implement a loop within the program that initially begins at the value of
flashdelay and counts down to 0, a second variable checkdelay is needed as a copy of
flashdelay

start

flashdelay=1000

check switches
incr/decr flashdelay

next led in sequence

checkdelay=flashdelay

decrease checkdelay

N checkdelay=0
Y

Dim Flashdelay As Word
Dim Led As Byte
Dim Checkdelay As word
dim direction as bit
Flashdelay = 1000
Do

 Checkdelay = Flashdelay
 Do

 Gosub Checkswitches

 Decr Checkdelay

 Loop Until Checkdelay = 0

 If Direction = 0 Then
 Gosub Nextright
 Else
 Gosub Nextleft
 End If
Loop
End
'Subroutines
…

The check switches subroutine using debounce commands

Checkswitches:
 Debounce Sw1 , 0 , Decrflashdelay, Sub
 Debounce Sw2 , 0 , Incrflashdelay, Sub
Return

Decrflashdelay:
 Decr Flashdelay
Return

Incrflashdelay:
 Incr Flashdelay
Return

54

Programs as solutions: understanding algorithms and flowcharts

When learning to program students find it straight forward to write programs which contain one
simple process and result in a few lines of code; however they often struggle to reach the next
stage which requires them to write programs that require a more complex process or multiple
processes together. Because of their ease with uncomplicated code they begin programming
at the keyboard rather than with pen and paper and their programs can become confused very
quickly.

Technological practice (at all levels) requires students to undertake planning and to conform to
good codes of practice; so when writing software students must not write software without
planning it first.

You will learn how to follow through a process of developing a program from initial idea
through to code.

 Planning Sequence for an AVR project

1. Research on, then write an explanation of, the problem, issue, need or opportunity
2. Draw a System Block Diagram and write any comments to clarify what you need to

do (this is called a brief)
3. Sketch the physical device

(e.g. case drawings)
4. Write down the algorithm (process) to be carried out by the program (this can be

quite difficult, however if you can’t do it now then there is no way you can write code
to do it later!)

5. Determine the variables to be used by the program
6. Design a flowchart for the process
7. Test it using a range of inputs
8. Identify the control statements that need to be used
9. Develop the circuit

• Decide which input and output devices to develop first
• Start with simple circuits and build up to the final circuit in stages, planning each

stage as you go with:
i. schematic and layout diagrams
ii. a flowchart

• A visual diagram of the way the software operates
iii. a program

10. Write and test your program
11. Design or find a suitable case
12. Design a PCB to suit the case
13. Make and test the PCB
14. Put into the case

55

56

One Page Brief

Name: __________________ Project: _______________ Date: _____ Version: ___

 Client, customer or end-user:

 Description of the problem, issue, need or opportunity(diagrams may
be required):

 Conceptual Statement:

Design and construct a …

 System Block Diagram: (include all input and output devices)

 Further written specifications:

57

 Algorithm Development Worksheet

Name: __________________ Project: _______________ Date: _____ Version: ___

Define all the input and output devices

Inputs Outputs
Device

Description
Name Device

Description
Name Starting State

The algorithm (description of the operation of the system)

Initially the

For each input describe what happens to any output devices
Use “if __________ then _________” or “ ____________ until ___________” statements

58

 Example Brief

Name: __________________ Project: _______________ Date: _____ Version: ___

 Client, customer or end-user: …

 Description of the problem, issue, need or opportunity (diagrams may be
required):

Vehicles travel at high speeds on this road and although there is a pedestrian crossing,
pedestrians are at risk

 Conceptual Statement:

Design and construct a set of traffic lights for a pedestrian crossing

 System Block Diagram: (include all input and output devices)

 Further written specifications:

 Lights go from red to orange when the button is pressed, waits for 25
seconds then goes red for 1.5 minutes then back to green, Cross and
DontCross lights work as per expected.

59

 Algorithm Planning Example

Name: __________________ Project: _______________ Date: _____ Version: ___

Define all the input and output devices

Inputs Outputs
Device

Description
Name Device

Description
Name Starting State

Large buttons on
each pole for
pedestrians to
press to cross

CROSSBUTTON RED traffic lights
for cars on pole

REDLIGHT OFF

 Orange traffic
lights for cars

ORANGELIGHT OFF

 Green traffic
lights for cars

GREELIGHT ON

 Buzzer to
indicate to
pedestrians to
cross now

BUZZER OFF

 CROSS NOW
light on each
pole

CROSSNOW OFF

 DON’T CROSS
light on each
pole

DONTCROSS On

The algorithm (description of the operation of the system)

Initially the
Redlight , orangelight, buzzer and cross are off,
Greenlight, dontcross are on
For each input describe what happens to any output devices
Use “if __________ then _________” or “ ____________ until ___________” statements
If the pedestrian presses the crossbutton then
 The greenlight goes off, the orange light goes on

After 25 seconds the orangelight goes off the redlight goes on

Draw a flowchart, write test and debug your program
Changes to the brief to consider:
- After the redlight comes on should there be any delay before the crossnow?
- How long should the buzzer stay on after crossnow comes on?
- What signals are given to pedestrians before the lights go green again?

60

 Example Brief

Name: Mr C Project: Glue Gun Timer Date: someday! Version: 1

 Client, customer or end-user: ME

 Description of the problem, issue, need or opportunity (diagrams may
be required):

 The hot glue gun is left on and forgotten about making a mess on the
bench and creating a potential hazard

 Conceptual Statement:

Design and construct a timer for the hot glue gun to turn it off automatically

after 60 minutes

 System Block Diagram: (include all input and output devices)

 Further written specifications:

 The glue gun turns on only when the start button is pressed

 It automatically goes off after 60 minutes

It goes off if the stop button is pressed

If the start button is pressed at anytime the timer starts from 60 again

 The green and red LEDs indicate if the glue gun is on or off

61

 Algorithm Development Example

Name: Mr C Project: Glue Gun Timer Date: someday! Version: 1

Define all the input and output devices

Inputs Outputs
Device

Description
Name (use

single words)
Device

Description
Name (use

single words)
Starting State

Green
pushbutton
switch

startbtn Red LED offled On

Red push button
switch

stopbtn Green LED onled Off

 Hot Glue Gun gluegun Off

The algorithm (description of the operation of the system)

Initially the

Offled is ON, onled and ggun are off

For each input describe what happens to any output devices
Use “if __________ then _________” or “ ____________ until ___________” statements

If the user presses startbtn then the Offled goes off, onled and ggun go on

These stay in this state until 60 minutes has passed then the Offled goes ON, onled and
gluegun go off

If the user presses stopbtn then the Offled goes ON, onled and gluegun go off

62

 Glue Gun Timer Flowchart

63

' OneHourTimerResetStop.bas
' B.Collis 1 Aug 2008

' 1 hour glue gun timer program

' the timer restarts if the start button is pressed again

' the timer can be stopped before timing out with the stop button

$crystal = 1000000

$regfile = "attiny26.dat"

Config Porta = Output

Config Portb = Output

Config Pina.2 = Input

Config Pina.3 = Input

Gluegun Alias Porta.5

Offled Alias Porta.6

Onled Alias Porta.7

Startbutton Alias Pina.2

Stopbutton Alias Pina.3

Dim Mscount As Word

Dim Seccount As Word

Const Max_mscount = 999

Const max_secCount = 3599

Do

 Set Offled

 Reset Onled

 Reset Gluegun Initially Off

 Do

 Loop Until Startbutton = 0

 Reset Offled

 Set Onled

 Set Gluegun

 Mscount = 0

 Seccount = 0

 Do

Do

 Incr Mscount 'add 1 to milliseconds

 Waitms 1

 If Startbutton = 0 Then 'Check Switch

 Mscount = 0 ‘set time back to start

 Seccount = 0

 End If

 If Stopbutton = 0 Then 'Check Switch

 Mscount = Max_mscount ‘set time to max

 Seccount = Max_seccount

 End If

 Loop Until Mscount > Max_mscount 'loop 3600 times

 Mscount = 0

 Incr Seccount

 Loop Until Seccount > Max_seccount 'loop 1000 times

loop

64

 Multiplication Algorithms

Process Notes

Issue: Multiply two numbers together
using only addition e.g. AxB=Answer

Not all microcontrollers can do multiplication within their
internal hardware

Algorithm:
Add A to the answer B times

Finding the right words to describe the algorithm can be
difficult at times, you need to concise, accurate and
clear. This can be a step students struggle with.

Variables:
(memory locations to store data in)
numA – byte size
numB – byte size
Answer – word size

Choose useful names and think about the size of the
variable (a byte stores 0-255, a word 0-65535, an integer
stores -32768 to 32767, a long stores -2147483648 to
2147483647)

Flowchart:

Note the shapes of the elements:

Start and end
Inputs and outputs
Processes
Decisions

Learn the process of keeping track of how many times
something is done. A variable is used to count the
number of times a loop is carried out. In this case the
variable is decreased each time through the loop until it
is 0. An alternative is to increase a variable until it
reaches a specific value.

Within a microcontroller though it is often faster to test a
variable against 0 than some other number.

Test the flowchart with an example

Answer Num2
6 8

12 7
18 6
24 5
30 4
36 3
42 2
48 1
54 0

Does it work?
Note how the columns in the test follow the same order
as the processes in the loop.

This stage can be a little confusing and often we can be
out by 1 either way (if it is then our answer might not be
54 but 48 or 60)

If you get wrong answers after a loop check that you are
decreasing or increasing them the right number of times.

65

Identify the control statements to be
used.

' SimpleMultiplicationV1.bas
$crystal = 1000000
$regfile = "attiny26.dat"
Config Porta = Output
Config Portb = Output
Config Pina.3 = Input

Dim I As Byte
Dim Num1 As Byte
Dim Num2 As Byte
Dim Answer As Word

'************************************
Num1 = 6
Num2 = 9
Answer = 0
Do
 Answer = Answer + Num1
 Decr Num2
Loop Until Num2 = 0

'************************************
Num1 = 6
Num2 = 9
Answer = 0
For I = 0 To Num2
 Answer = Answer + Num1
Next

'************************************
Num1 = 6
Num2 = 9
Answer = 0
For I = Num2 To 0 Step -1
 Answer = Answer + Num1
Next

'************************************
Num1 = 6
Num2 = 9
Answer = 0
While Num2 > 0
 Answer = Answer + Num1
 Decr Num2
Wend
End

In BASCOM there are several control mechanisms to
manage loops.

If you copy this code into BASCOM-AVR, then save it
and compile it you can try it out using the simulator (F2).

Do-Loop Until…

For-Next…
this requires another variable to act as the loop counter,
and can either count up or count down.

While – Wend

When you run this program you will find that two of
them work correctly and two do not! You need to
understand which and fix them; so watch carefully
the values of the variables in the simulator and fix
the two that need fixing.

66

Multiplication of very large numbers
The previous code is OK for small to medium size problems however there are much more
efficient algorithms; here are 2 alternatives.
 ‘Peasant’ Multiplication 75 x 41

75 41
37 82
18 164
9 328
4 656
2 1312
1 2625
 3075

Write down the Algorithm:

Divide the first number by 2 (ignore remainder)
and multiply the second number by 2. If the
second number is odd add it to the total. Keep
doing this process until after the first number is
1.

What variables will be needed:

Num1
Num2
Total

Flowchart:

add num2 to totalnum1 odd? Y
N

N num1 =0
Y

num1 = num1 mod 2

num1 = num1 mod 2

start

end

Program:

' PeasantMultiplicationV1.bas

$crystal = 1000000
$regfile = "attiny26.dat"

Config Porta = Output
Config Portb = Output

Dim Temp As Word
Dim Num1 As Word
Dim Num2 As Word
Dim Answer As Word

Num1 = 16
Num2 = 39
Answer = 0

Do

 Temp = Num1 Mod 2
 If Temp = 1 Then Answer = Answer + Num2

 Num1 = Num1 / 2

 Num2 = Num2 * 2

Loop Until Num1 = 0

End

67

 Long Multiplication 41,231 x 3,1231

41,321
x 3,131
41,321

1,239,630
4,132,100

123,963,000
129,376,051

Write down the Algorithm:

What variables will be needed:

Flowchart:

68

 Algorithm exercises

1. A factory fills drink bottles; it has a machine that puts the drink bottles in to cartons and full
cartons onto pallets.
1A. Design an algorithm and flowchart that counts 12 bottles into each carton and keeps track of the
number of cartons.
1B. Extend this in a second algorithm and flowchart that tracks the number of bottles and the
number of cartons, when number of cartons is over 64 then increase the number of pallets.

2.
A program marks test scores and gives grades of N, A, M, or E based upon the following scores 0%
to 33% = N, 34% to 55% = A, 56% to 83% = M 83% to 100% = E
Write the algorithm and draw the flowchart for this process.

3.
Design an algorithm and flowchart for a program that gets a player to guess a random number from
1 to 1000.
If correct, then display the number of guesses and start again
If incorrect then give as too high’ or ‘too low’
When the number of guesses goes over 8 the player loses

4.
4A. a golf course watering system monitors the time and moisture level of the ground and waters
the grass in the early evening if it is needed.
4B. the watering system comes on for 30 minutes then waits 60 minutes to measure the moisture
level and comes on for a second watering if it is below a fixed level.

5.
Design an algorithm and flowchart for a program that calculates powers eg. 25 = 32 (use only
addition and loops)

69

LCD programming exercises.

These exercises will require you to manipulate the display, manipulate text, manipulate numbers.
And become familiar with the use of loops to get things done.
You need to save each version of the program separately e.g wassup_b.bas, wassup_p.bas,
wassup_a.bas.

Basic: put ‘wassup’ on the display
Proficient: Have ‘wassup’ scroll around the screen continuously
Advanced: Have the 6 letters of ‘wassup’ appear spread out over the display and then after a brief
delay move in towards the centre and in order.

Basic: calculate 2^8 and display it
Proficient: for n from 1 to 25, display 2^n on the screen, wait for 1 sec and then do the next number
Advanced: Write you own code to calculate the square root of the answer for each of the above
answers

Basic: Display a static weather report for Auckland on the LCD screen
Proficient: Do graphics for sunny, cloudy, wet, and snowy for your weather
report, that flash on the screen, these graphics should be larger than a single
lcd square, perhaps 2/3 lines x 4squares
Advanced: Scroll the message on and off the display and have the graphics
flash for a while, then the weather report scrolls back on again.

Basic: Display 2 random numbers between 2,000 and 99,000
Proficient: repeat this process continuously, and also subtract the smaller from the larger number
and display the answer, have a 3 second delay between each new calculation
Advanced: Scroll the results off the display 0.5 seconds after the calculation

Basic: Create 4 different pacman graphics: one pacman mouth open, one
pacman mouth closed, one a target and the last the target exploding
Proficient: Have the pacman move around the screen these, staying on each
square for only 0.5 seconds.
Advanced: Generate a random location on the LCD and place the target
there, have the pacman move around the screen and when it lands on the
target the target explodes and the pacman moves on around the rest of
the screen

Basic: create ‘TCE’ in one large font that covers all four lines of the lcd
Proficient: flash the message on the screen three times, 1 second on
then 1 second off after that have it stay on for 12 seconds then repeat the
3 flashes.
Advanced: Have this text scroll in from the right and out through the left

70

 Scrolling Message Assignment
AIM: students will be able to manipulate text in Bascom.

An alphanumeric (text) LCD is a very common output device used with microcontrollers
however they have limited screen size so a longer message must be either split up and
shown page by page or scrolled across the screen. In this assignment you will scroll a
message across the screen. The message will be an information message regarding a news
item or weather forecast up to 200 characters in length.

‘Declare Variables
Dim message as string * 200
Dim scroll_length as byte
Dim scroll_posn as byte
Dim forty_chars as string * 40

‘Initialise Variables
Message = “ the weather today will be …..”

Scroll_text:
 Scroll_length = len(message)
 If Scroll_length > 40 then
 Scroll_length = scroll_length – 40
 End if
 Scroll_posn = 0
 While scroll_posn < scroll_length
 Incr scroll_posn
 Forty_chars =mid(message,scroll_posn,40)
 Locate 1,1
 Lcd forty_chars
 Waitms 150
 Wend
Return

1. Change the While-Wend to a
Do-Loop-Until structure

2. Change the While-Wend to a For-Next

This routine scrolls the complete message once and then returns to the main loop, it is a very long routine
taking 150mS x the length of the message to complete. This makes it almost useless as part of a larger
program.

This routine needs to be replaced so that it returns to the main loop after each shift of the message. This
would make the routine a general purpose routine that could be used as part of a larger program.
Of course a delay will be necessary but a loop counter rather than waitms will be needed.

There are many useful commands in Bascom for manipulating text. Text in microcontrollers
is stored as codes using ASCII, each character taking up 1 byte of RAM. One subroutine to
scroll text might look like this.

71

 Strings Assignment

'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
'config inputs
Config Pina.0 = Input ' ldr
Config Pind.2 = Input 'switch A
Config Pind.3 = Input 'switch B
Config Pind.6 = Input 'switch C
Config Pinb.1 = Input 'switch D
Config Pinb.0 = Input 'switch E
'LCD
Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =
Portc.7 , E = Portc.3 , Rs = Portc.1
Config Lcd = 40 * 2 'configure lcd screen
'ADC
'Config Adc = Single , Prescaler = Auto , Reference = Internal
'Start Adc

' 7. Hardware Aliases
Sw_a Alias Pinb.0
Sw_b Alias Pinb.1
Sw_c Alias Pind.2
Sw_d Alias Pind.3
Sw_e Alias Pind.6

' 8. initialise ports so hardware starts correctly
Porta = &B11111100 'turns off LEDs ignores ADC inputs
Portb = &B11111100 'turns off LEDs ignores switches
Portc = &B11111111 'turns off LEDs
Portd = &B10110011 'turns off LEDs ignores switches
Cls 'clear lcd screen
Cursor On Noblink
'--
' 9. Declare Constants
'--
' 10. Declare Variables
Dim Mix As Byte
Dim Firstname As String * 12
Dim Middlename As String * 12
Dim Lastname As String * 12
Dim Fullname As String * 40
' 11. Initialise Variables
Mix = 0
Firstname = "Edgar"
Middlename = "Alan"
Lastname = "Poe"
Fullname = ""

72

'--
' 12. Program starts here
Cls
Gosub Welcome
Do
 Debounce Sw_a , 0 , Welcome , Sub
 Debounce Sw_b , 0 , Mixup , Sub
Loop
End 'end program

'--
' 13. Subroutines
Welcome:
 Cls
 Lcd "Welcome"
 Lowerline
 Lcd Chr(126) : Lcd "to strings" : Lcd Chr(127)
Return

Mixup:
 Incr Mix
 Select Case Mix:
 Case 1 : Fullname = Firstname + " " + Middlename + " " + Lastname
 Case 2 : Fullname = Middlename + " " + Lastname + " " + Firstname
 Case 3 : Fullname = Lastname + " " + Firstname + " " + Middlename
 Case 4 : Fullname = Mid(fullname , 10 , 5)
 Case 5 : Fullname = Lastname + "," + Left(firstname , 2)
 Case 6 : Fullname = Version(1)
 Case 10 : Mix = 0
 End Select
 Cls
 Lcd Fullname
Return

Insert case statements 7,8 and 9 above. From the help file find out how to
use and then add them to this program 3 of the following

INSTR LCASE LEN LOOKUPSTR LTRIM RIGHT RTRIM SPACE SPC STR
STRING TRIM UCASE

73

 ASCII Character Table
What is available inside the LCD using the command LCD CHR(__)

ASCII stands for ___

74

 ASCII Assignment
1. Copy the following code into BASCOM
2. Compare the datasheet for the LCD with the characters that actually appear on your
LCD.
3. Write the code for the decrementcode subroutine

'--
' 1. Title Block
' Author: B.Collis
' Date: 1 June 2005
' File Name: LCDcharactersV1.bas
'--
' 2. Program Description:
' everytime btn is pressed the character on the lcd changes
' highlights the use of the ASCII code
' 3. Hardware Features:
' LEDS
' LDR, Thermistor on ADC
' 5 switches
' LCD
' 4. Program Features
' do-loop to keep program going forever
' debounce to test switches
' if-then-endif to test variables
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of the micro
$regfile = "m8535.dat" 'our micro, the ATMEGA8535-16PI
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
'config inputs
Config Pind.2 = Input 'switch A
Config Pind.3 = Input 'switch B
Config Pind.6 = Input 'switch C
Config Pinb.1 = Input 'switch D
Config Pinb.0 = Input 'switch E
'LCD
Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E =
Portc.3 , Rs = Portc.2
Config Lcd = 40 * 2 'configure lcd screen
' 7. Hardware Aliases
Sw_a Alias Pinb.0
Sw_b Alias Pinb.1
Sw_c Alias Pind.2
Sw_d Alias Pind.3

75

Sw_e Alias Pind.6

' 8. initialise ports so hardware starts correctly
Porta = &B11111100 'turns off LEDs ignores ADC inputs
Portb = &B11111100 'turns off LEDs ignores switches
Portc = &B11111111 'turns off LEDs
Portd = &B10110011 'turns off LEDs ignores switches
Cls 'clear lcd screen
'--
' 9. Declare Constants
'--
' 10. Declare Variables
Dim Code As Byte
Dim State As Byte
' 11. Initialise Variables
Code = 0
State = 0
'--
' 12. Program starts here
Do
 Sw_a , 0 , Swa_press , Sub
Debounce Sw_b , 0 , Swb_press , Sub
If State = 0 Then Gosub Intro
If State = 1 Then Gosub Increasecode
If State = 2 Then Gosub Decreasecode
If State = 4 Then Gosub Waiting
Loop
End 'end program

'--
' 13. Subroutines
Intro:
Lcd "ASCII codes"
Lowerline
Lcd "btn A incrs code"
Return

Waiting:
'do nothing
Return

Increasecode:
If Code < 255 Then 'max value is 255
Incr Code
Else
Code = 0 'if > 255 reset to 0
End If
Cls
Lcd Code : Lcd " " : Lcd Chr(code)
State = 4
Return

76

Decreasecode:
'write your code here

Return

Swa_press:
State = 1
Return

Swb_press:
State = 2
Return

77

 Time
Bascom has built in functions for managing the time and date. These require a 32.768Khz crystal
to be connected to the micro.

‘SoftClockDemoProgam1.bas
‘32.768kHz crystal is soldered onto C.6 and C.7

$crystal = 8000000
$regfile = "m8535.dat"

Config Porta = Output
Config Portb = Output
Config Portc = Output
Config Portd = Output
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E
= Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4

Enable Interrupts '1activate internal timer

Config Date = Mdy , Separator = / '2
Config Clock = Soft '3

Date$ = "06/24/09" '4 string to hold the date
Time$ = "23:59:56" '5 string to hold the time

Cls
Cursor Off

Do
 Locate 1 , 1
 Lcd Time$; " " ; Date$ '6 display the two strings
Loop
End

78

‘SoftClockTrialDemoProgam2.bas
$crystal = 8000000
$regfile = "m8535.dat"

Config Porta = Output
Config Portb = Output
Config Portc = Output
Config Portd = Output
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E
= Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4
Grnled Alias Portd.7

Enable Interrupts
Config Date = Mdy , Separator = /
Config Clock = Soft , Gosub = Sectic '1 every second do sectic Bweekday As Byte
Dim Strweekday As String * 10 '2 days of week
Date$ = "06/24/09"
Time$ = "23:59:56"

Cls
Cursor Off
Do
 Locate 1 , 1
 Lcd Time$; " " ; Date$
 Locate 2 , 1
 Lcd _sec ; _min ; _hour ; _day ; _month ; _year '3

 Bweekday = Dayofweek() '4
 Strweekday = Lookupstr(bweekday , Weekdays) '5
 Locate 3 , 1
 Lcd Bweekday ; " = " ; Strweekday '6
 ' DayOfWeek, DayOfYear, SecOfDay, SecElapsed, SysDay, SysSec ,SysSecElapsed 7
Loop
End

Sectic: '8
 Toggle Grnled '9
Return

Weekdays: '10
Data "Monday" , "Tuesday" , "Wednesday" , "Thursday" , "Friday" , "Saturday" , "Sunday"

‘Extend the code to display the month

79

‘SoftClockTrialDemoProgam3.bas
$crystal = 8000000
$regfile = "m8535.dat"

Config Porta = Output
Config Portb = Output
Config Portc = Output
Config Portd = Input '1

Redsw Alias Pind.2 '2

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E
= Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4

Enable Interrupts

Config Date = Mdy , Separator = /
Config Clock = Soft

Date$ = "06/24/09"
Time$ = "23:59:56"

Cls
Cursor Off

Do
 Debounce Redsw , 0 , Red , Sub '3
 Locate 1 , 1
 Lcd Time$; " " ; Date$
Loop
End

Red: '4
 Incr _min
 If _min > 59 then _min = 0 ‘5 stop overflow
Return

80

'SoftClockTrialDemoProgam4.bas
$crystal = 8000000
$regfile = "m8535.dat"

Config Porta = Output
Config Portb = Output
Config Portc = Output
Config Portd = Input

Redsw Alias Pind.2

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E
= Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4

Enable Interrupts

Config Date = Mdy , Separator = /
Config Clock = Soft

Date$ = "06/24/09"
Time$ = "23:59:56"

Cls
Cursor Off

Do
 If Redsw = 0 Then Gosub Red '1 your own simple debounce
 Locate 1 , 1
 Lcd Time$; " " ; Date$
Loop
End

Red:
 Waitms 25 '2 wait for contact bounce
 Do '3 wait for switch release
 Loop Until Redsw = 1
 Incr _min
 If _ min > 59 then _min=0
Return

81

 Sounding Off

How is sound made?

A speaker makes sound by moving a paper diaphragm (the speaker cone) back and forth rapidly.
This vibrates the air which vibrates our ear drum causing us to hear the sound.

When the voltage to a speaker is
switched on and off or reversed the
speaker diaphragm will move in and
out. The greater the voltage the greater
the vibrations will be and the louder the
sound will seem.

Attaching the speaker to a microcontroller

This uses one of the outputs of the microcontroller to drive a speaker. The speaker however is
typically only 8 ohms and if we connect it directly between a port pin and 5V it will draw too much
current and could damage the microcontroller’s internal circuits or burn out the speaker (or both).

We can use a transistor circuit as a driver/amplifier circuit.

http://ourworld.compuserve.com/homepages/Bill_Bowden/page8.htm#amp.gif

(or use a dedicated amplifier chip like the LM386)

82

Code to make a siren

'--
' 6. Hardware Setups
Config Timer1 = Timer , Prescale = 1
On Ovf1 Timer1_isr ‘at end of count do this subroutine
Enable Interrupts ‘global interrupt enable
' 7. Hardware Aliases
Spkr Alias Portb.2 ‘speaker is on this port
'--
' 9. Declare Constants
Const Countfrom = 55000 ‘use constants to aid program understanding
Const Countto = 64500
Const Countupstep = 100
Const Countdnstep = -100
Const Countdelay = 3
Const Delaybetween = 20
Const numbrSirens = 10
'--
' 10. Declare Variables
Dim Count As Word ‘use useful names to help program understanding
Dim Sirencount As Byte
Dim Timer1_preload As Word
Timer1 = Timer1_preload
'--
' 12. Program starts here
Do
 Gosub Makesiren
 Wait 5
Loop
End
'--
' 13. Subroutines
Makesiren:
 Enable Timer1 'sound on
 For Sirencount = 1 To numbrSirens ‘how many siren cycles to do
 For Count = Countfrom To Countto Step Countupstep ‘rising pitch
 Timer1_preload = Count ‘pitch value
 Waitms Countdelay ‘length of each tone
 Next
 For Count = Countto To Countfrom Step Countdnstep ‘falling pitch
 Timer1_preload = Count ‘pitch value
 Waitms Countdelay ‘length of each tone
 Next
 Waitms Delaybetween ‘delay between each cycle
 Next
 Disable Timer1 'sound off
Return
'--
' 14. Interrupt service routines (isr)
Timer1_isr:
 'if the timer isnt preloaded it will start from 0 after an interrupt
 Timer1 = Timer1_preload
 Toggle Spkr
Return

83

High tech (better) ways of generating sound

The method used above is not a nice way to generate sound, i.e. making a square wave that
switches a speaker rapidly from on to off. Signals that produce good quality sound are sine waves
not square waves.

The difference between the two is that a sine wave varies smoothly in voltage over time.

To generate a reasonable sine wave from a computer we
use a step process, the signal is increased in voltage
steps using a DAC (Digital to Analogue) Converter.

The R2R ladder network is used as a digital to analogue converter,
turning on combinations of resistors causes the voltage to step up and
down, the output voltage will look a little like the waveform below
(however it will have 256 different steps).

This stepped wave is a much better approximation to a sine wave than the square wave. The
smaller the steps and the more there are of them the better the sound.

84

System and Software Design

 Understanding how simple systems work
A product or device is not just a collection of components, it is much more, the inventor of the device
didn’t just combine some bits together they created something when they thought of it. They envisaged it
as a system where all the parts have a unique purpose and function to make the product complete.

A first example is a food processor.

To analyse the system
1. Draw a system diagram
2. Identify and describe all the inputs and outputs of the system

a. Motor – half/full speed
b. power switch - on/off
c. speed switch – high/low
d. bowl safety switch – on/off

3. Describe in words and drawings how these interact with each
other, use logic descriptors such as AND,OR and NOT.

Here are some possible descriptions. Are they all correct? Which one is
best? Why?

1. The motor goes when the safety switch is closed AND the power switch is on AND the speed
switch is either position.

2. The motor runs at half speed if the speed switch is in low AND safety switch is on AND the main
switch is on.

3. The motor runs at full speed if the safety switch is on AND the main switch is on.

A toaster is another good example of a system.

1. Draw a system diagram

2. Identify all the parts of the toaster
a.
b.
c.
d.
e.
f.

2. Describe how the parts of the system interact with each other

85

 Problem Decomposition Example
Here is a more complex system that we will develop the software for

1. Define the problem in writing (a brief), e.g.
The system will monitor temperature inside a room and display it on an LCD, an alarm will sound
for 45 seconds if it goes below a user preset value. A light will stay flashing until reset. If not
reset within 5 minutes the alarm will retrigger again. If the temperature rises at any time then the
alarm will automatically reset.

2. Draw a system block diagram of the hardware

3. Research and identify the interfaces to the system e.g.

a. An LM35 temperature sensor
b. A 2 line x 16 character LCD
c. A flashing light that can be seen from 6 meters away
d. A speaker with sufficient volume to be heard in the next room
e. A keypad for entering values

4. Draw interface circuits for each of the interfaces
5. build the interfaces one at a time, design test subroutines for them and test them thoroughly
6. Problem decomposition: break the system down into successive sub-systems, until the sub-

systems are trivial in nature. In this diagram the Alarm function has been broken down into 4 sub
parts of which one has been broken down further.

7. Design the logic flow for the solution using flow or state diagrams
Test your logic thoroughly! If you miss an error now you will take 19.2 times longer to finish!

86

Here is one flow chart for the temperature system.

This is a small but very complex flowchart and it is not a good solution for a number of reasons:
A. It is difficult to manage all the relationships to get the logic absolutely correct, it took a while to

think it through and it may not be exactly right yet!
B. It is very difficult to write a program to match this flowchart without the use of goto statements

which are poor programming practice and not a feature of the higher level languages you will meet
in the future.

C. Once the code is written it is difficult to maintain this code as it lacks identifiable structure

It is OK to use flowcharts for small problems but if a flowchart has more than 3 loops or the loops
cross over each other use an alternative method!

87

 Statecharts
Statecharts are a better solution. First think about the finished device and identify the different states
of operation it will be in and secondly identify the conditions or events that will cause one state to
transition (change) to another.

Here are the 4 states for the temperature controller and a diagram representation of it (using Umlpad)
The black circle indicates the stating state.

State 1: measure and display temperature
 Conditions: temp < setting
 keypad to change setting
State 2: light and alarm are on
 Conditions: reset pressed
 temperature >= setting
 45 second time out
State 3: light on
 Conditions: reset pressed
 temperature >= setting
 5 minute time out
State 4: modify temp setting
 Conditions: finished changing setting

Each state includes the names of subroutines that will be called to do different things. It is a good idea
not to put code into the state even if it is trivial, so that structure is easily identifiable. Each subroutine
may require a flowchart to plan it or even another statechart.

Here is a statechart diagram of this problem with the transitions and the conditions that cause the
transition to occur. A condition is in square brackets [], followed by any actions you want the program
to take on the way to the next state. An action is the name of another subroutine.

This style of problem solving overcomes the issues identified relating to flowcharts

A. The relationships between states are easily managed and they logically flow so errors are seen
quickly.

88

B. It is easy to write the code to match this diagram using if-then or while wend statements
C. The code is easily maintained and flows logically when it is written making it easier to remember

what you did or for others to read and maintain.
D. If you closely follow the structure using subroutine names then you can use the software I have

developed to create the basic structure for your code in BASCOM_AVR.

Statecharter is written in C# using SharpDevelop and requires the Microsoft dotnet framework to be
installed on the PC; there is no install just run statecharter.exe directly. The statechart file from UMLPAD
is an XML file and straight forward to peruse with a text editor. As it follows a very defined format it is not
hard to parse to identify the states, transitions etc.

When using UMLPad to create
statecharts for conversion using
statecharter, you must:
A – name each state without spaces and
do not use reserved Bascom words
B – the actions in each state will be calls
to subroutines, again no spaces in
names and no reserved words

C- When using UMLPad use conditions to trigger transitions, not events, these will appear using if-then
statements e.g. if tempr=10
D. If something needs to happen in between states then enter these in the action, these will be calls to
subroutines as well, e.g. gosub clearlcdsub

89

Const LightAlarmOn = 1
Const LightOn = 2
Const MeasureDisplay = 3
Const ModifyTemprSetting = 4

Do
 while state = LightAlarmOn
 gosub ReadLM35
 gosub DisplayTempr
 gosub ReadButtons
 if secs > 45 then
 state = LightOn
 GOSUB AlarmOff
 end if
 if tempr > setTempr then
 state = MeasureDisplay
 GOSUB LightAlarmOff
 end if
 if btn=reset then
 state = MeasureDisplay
 GOSUB LightAlarmOff
 end if
 wend

 while state = LightOn
 gosub ReadLM35
 gosub DisplayTempr
 gosub ReadButtons
 if btn=reset then
 state = MeasureDisplay
 GOSUB lightOff
 end if
 if tempr>setTempr then
 state = MeasureDisplay
 GOSUB lightOff
 end if
 if secs>300 then
 state = MeasureDisplay
 GOSUB lightOff
 end if
 wend

 while state = MeasureDisplay
 gosub ReadLM35
 gosub DisplayTempr
 gosub ReadButtons
 if tempr < setTempr then
 state = LightAlarmOn
 GOSUB startTimer
 end if
 if btn=setTempr then
 state = ModifyTemprSetting
 end if
 wend

 while state = ModifyTemprSetting
 gosub DisplayOldTempr
 gosub DisplayNewTempr
 if btn=setTempr then
 state = MeasureDisplay
 GOSUB SaveNewTempr
 end if
 wend
Loop

'*********************************
subroutines

ReadLM35:
Return

DisplayTempr:
Return

ReadButtons:
Return

DisplayOldTempr:
Return

DisplayNewTempr:
Return

startTimer:
Return

lightOff:
Return

AlarmOff:
Return

SaveNewTempr:
Return

LightAlarmOff:
Return

Labels are
used for states

rather than
numbers to

facilitate
program

readability

The state
variable is used

to manage
which

subroutines are
called

Only change to
another state
when specific

conditions occur.

All the rest of the
program resides in
subroutines which
are then easier to
write and check

individually

90

 Token Game – Statechart Design Example
BRIEF: The game starts with a welcome screen then after 2 seconds the instruction screen appears. The
game waits until a button is pressed then a token T is randomly placed onto the LCD. 4 buttons are
required to move the player P around the LCD: 8(up), 4(left), 6(right) and 2(down) to capture the token.
Note that the player movements wrap around the screen.
When the player has captured a token, another is randomly generated. After capturing 5 tokens the time
taken is displayed, after capturing 10 tokens display the time taken.

 T ▲
 ◄ P ►
 ▼

Here is the statechart for this game (note in this version after collecting 10 tokens nothing happens).

(UMLPAD)

In the program there is a state variable that manages the current state and controls what the program is
doing at any particular time. This state variable is altered by the program as various events occur (e.g. a
token has been captured) or by user input (pressing a button to restart the game).

91

dim state as byte
'REMEMBER TO DIMENSON ALL YOUR VARIABLES HERE

Const got5tokens = 1
Const HitEnemy = 2
Const YouLose = 3
Const InPlay = 4
Const HighScores = 5
Const level2Instructions = 6
Const got10tokens = 7
Const got1token = 8
Const YouWin = 9
Const Welcome = 10
Const Instructions = 11
'REMEMBER TO DEFINE ALL YOUR CONSTANTS HERE

state = Welcome

Do
 while state = got5tokens
 gosub DispScore
 state = level2Instructions
 wend

 while state = HitEnemy
 state = YouLose
 wend

 while state = YouLose
 state = Welcome
 wend

 while state = InPlay
 gosub refreshDisplay
 gosub ReadButtons
 if xPos=TokenX and yPos=TokenY then
 state = got1token
 end if
 if btn=right then
 state = InPlay
 GOSUB GoRight
 end if
 if btn=left then
 state = InPlay
 GOSUB GoLeft
 end if
 if btn=down then
 state = InPlay
 GOSUB GoDown
 end if
 state = HitEnemy
 if btn=Up then
 state = InPlay
 GOSUB GoUp
 end if
 wend

 while state = HighScores
 state = Welcome
 wend

 while state = level2Instructions
 if btn=start then
 state = InPlay
 GOSUB MakeAToken
 end if
 wend

 while state = got10tokens
 gosub DispScore
 state = YouWin
 wend

 while state = got1token
 gosub DispScore
 if TokenCount=10 then
 state = got10tokens

In the main do-loop
The subroutines to run

are within the While-Wend
statements

To change what a program is doing
you don’t Gosub to a new

subroutine. You change the state
variable to a new state, the current

subroutine is then completed.

The While_Wend statements
detect the state change and

controls which subroutines are
called.

The variable state is a 'flag' or

'signal' or 'semaphore' in computer
science. It is a very common

technique. We set the flag in one
part of the program to tell another

part of the program what to do.

92

 end if
 state = InPlay
 GOSUB MakeAToken
 if TokenCount=5 then
 state = got5tokens
 end if
 wend

 while state = YouWin
 state = HighScores
 wend

 while state = Welcome
 if secs>2 then
 state = Instructions
 end if
 wend

 while state = Instructions
 gosub DispInstructions
 if btn=start then
 state = InPlay
 GOSUB startTimer
 end if
 wend

Loop

'*********************************
subroutines

Disp_welcome:
 Locate 1 , 1
 Lcd " Welcome to the TOKEN GAME"
 Wait 2
 State = Instructions
 Cls
Return

Disp_instrustions:
 Cls
 State = Instructions
Return

Disp_instructions:
 Locate 1 , 1
 Lcd "capture the tokens "
 Locate 2 , 1
 Lcd "4=left, 6=right"
 Locate 3 , 1
 Lcd "2=up, 8=down "
 Locate 4 , 1
 Lcd "D to start"
Return

93

Got1:
 Cls
 Incr Tokencount
 Select Case Tokencount
 Case 1 To 4:
 Locate 1 , 10
 Lcd "you got " ; Tokencount ‘display number of tokens
 Waitms 500 ‘wait
 Cls
 State = Inplay ‘restart play
 Gosub Makeatoken
 Case 5:
 State = Got5tokens
 End Select
Return

Got5:
 Cls
 Locate 1 , 2
 Lcd " YOU GOT 5 TOKENS"
 Locate 2 , 1
 Seconds = Hundredths / 100 'seconds
 Lcd " in " ; Seconds ; "."
 Seconds = Seconds * 100
 Hundredths = Hundredths - Seconds
 Lcd Hundredths ; "seconds"
 State = Gameover
Return

Got10:
Return

Makeatoken:
 'puts a token on the lcd in a random position
 Tokenx = Rnd(rhs) 'get a random number from 0 to Xmax-1
 Tokeny = Rnd(bot_row) 'get a random number from 0 to Ymax-1
 Incr Tokenx 'to fit 1 to Xmax display columns
 If Tokenx > Rhs Then Tokenx = Rhs 'dbl check for errors
 Incr Tokeny 'to fit 1 to Ymax disp rows
 If Tokeny > Bot_row Then Tokeny = Bot_row 'dbl check for errors
 Locate Tokeny , Tokenx 'y.x
 Lcd "T" 'Chr(1)
Return

94

Go_left:
 Select Case Xpos
 Case Lhs : 'at left hand side of lcd
 Oldx = Xpos 'remember old x position
 Xpos = Rhs 'wrap around display
 Oldy = Ypos 'remember old y position
 Case Is > Lhs 'not at left hand side of lcd
 Oldx = Xpos 'remember old x position
 Xpos = Xpos - 1 'move left
 Oldy = Ypos 'remember old y position
 End Select
Return

Go_right:
 Select Case Xpos
 Case Is < Rhs:
 Oldx = Xpos
 Xpos = Xpos + 1
 Oldy = Ypos
 Case Rhs:
 Oldx = Xpos
 Xpos = Lhs
 Oldy = Ypos
 End Select
Return

Go_up:
 Select Case Ypos
 Case Top_row :
 Oldy = Ypos
 Ypos = Bot_row
 Oldx = Xpos
 Case Is > Top_row
 Oldy = Ypos
 Ypos = Ypos - 1
 Oldx = Xpos
 End Select
Return

Go_down:
 Select Case Ypos
 Case Is < Bot_row :
 Oldy = Ypos
 Ypos = Ypos + 1
 Oldx = Xpos
 Case Bot_row :
 Oldy = Ypos
 Ypos = Top_row
 Oldx = Xpos
 End Select
Return

These routines keep track of player movements.
We always know the current position and the old

position for the refresh display routine.

This gets a little complicated when the player
moves off the screen, e.g. when going from left

to right after the player hits the rhs it wraps
around to the lhs.

95

Serial Communications

Parallel communications is sending data all at once on many wires and serial
communications is all about sending data sequentially using a single or a few wires.
With serial communications the data is sent from one end of a link to the other end one
bit at a time. There are 2 ways of classifying serial data communications.

 1. As either Simplex, half duplex or full duplex
 2.Or as either synchronous or asynchronous

Simplex and duplex

In serial communications simplex is where data is only ever travelling in one direction,
there is one transmitter and one receiver.

In half duplex communications both ends of a link can be transmitter and receiver but
they take turns sending and receiving

In full duplex both ends can send and receive data at the same time.

Synchronous and asynchronous

Imagine sending the data 1010 serially, this is quite straight forward, the sender sends a
1 ,then a 0, then a 1, then a 0. The receiver gets a 1, then a 0, then a 1, then a 0; No
problems.

Now send 1100 the sender sends a 1 then 1 then a 0 then a 0, the receiver gets a one
then a zero, hey what happened!!

The receiver has no way of knowing how long a 1 or 0 is without some extra
information. In an asynchronous system the sender and receiver are setup to expect
data at a certain number of bits per second e.g. 19200, 2400. Knowing the bit rate
means that the spacing is known and the data is allocated a time slot, therefore the
receiver will know when to move on to receiving the next bit.

Synchronous communications is where a second wire in the system carries a clock
signal, to tell the receiver when the data should be read.

96

Every time the clock goes from 0 to 1 the data is available at the receiver. Now there is
no confusion about when a 1 is present or a zero. The receiver checks the data line only
at the right time.

Serial Communications, Bascom and the AVR

The AVR has built in serial communications hardware and Bascom has software
commands to use it.

• UART: (universal asynchronous receiver transmitter), which when used with
suitable circuitry is used for serial communications via RS232. It has separate txd
(transmit data) and rxd (receive data) lines, this is asynchronous (no clock line),
and is capable of full duplex, both transmitting and receiving at the same time.

• SPI: (serial peripheral interface) which has 2 data lines and 1 clock line, these are
the three lines used for programming the microcontroller in circuit as well as for
communications between the AVR and other devices. This is a synchronous
communications interface, it has a separate clock line. It is also full duplex. The 2
data lines are MISO (master in slave out) and MOSI (master out slave in) these
are full duplex, because data can travel on the 2 lines at the same time.

Bascom has software built into it for two other communications protocols

• I2C: (pronounced I squared C) this stands for Inter IC bus, it has 1 data line and 1
clock line. Because it has only 1 data line it is half duplex, the sender and
receiver take turns, and because it has a clock line it is synchronous.

• Dallas 1-Wire: this is literally 1 wire only, so the data must be half duplex, and
asynchronous.

97

 RS 232 Serial Communications

RS232/Serial communications is a very popular communications protocol between computers and
peripheral devices such as modems. It is an ideal communication medium to use between a PC and
the microcontroller.

The different parts of the RS232 system specification include the plugs, cables, their functions and
the process for communications. The plugs have either 9 or 25 pins, more commonly today the PC
has two 9 pin male connectors.

There are two data lines one is TXD (transmit data) the other RXD (receive data), as these are
independent lines devices can send and receive at the same time, making the system full duplex.
There is a common or ground wire and a number of signal wires.

There is no clock wire so the system of communications is asynchronous. There are a number of
separate control lines to handle 'handshaking' commands, i.e. which device is ready to transmit,
receive etc.

The AVR microcontroller has built in hardware to handle RS232 communications, the lines involved
are portd.0 (RXD) and portd.1 (TXD). These two data lines however cannot be directly connected to
a PCs RS232 port because the RS232 specification does not use 5V and 0V, but +15V as a zero and
-15V as a one. Therefore some interface circuitry is required, the MAX232 and the MAX275 are
common devices used for this. A connector (DB9-Female) is required

Research RS232 and find the names of all the pins

Pin 1 Pin 6

Pin 2 Pin 7

Pin 3 Pin 8

Pin 4 Pin 9

Pin 5

98

Connect the DS275 as shown.

The DS275 must connect
to d.0 and d.1

Use 3 header pins on the
pcb and a header plug for
the cable to the DB9-F
connector.

Software

There are several different software options for communicating over rs232 from the AVR, the simplest
however is the print statement.

print "hello" will send the ASCII text string to the pc. At the pc end there must be some software
listening to the comport, Windows has HyperTerminal already built in to do this.

Open HyperTerminal (normally found in programs/accessories/communications).
Start a new connection and name it comm1

On the next screen make sure you select comm1 as
the port.

Then setup the following properties

When you click on OK HyperTerminal can now
send and receive using comm1.

99

Bascom Program

'--
' 1. Title Block
' Author: B.Collis
' Date: 22 Aug 03
' Version: 1.0
' File Name: Serialio_Ver1.bas
'--
' 2. Program Description:
' This program sends simple text over rs232
' as well as displaying it on the local LCD
'
' 3. Hardware Features:
' DS275 connected to the micro TXD and RXD lines. then wired to a DB9F.
' LCD on portc - note the use of 4 bit mode and only 2 control lines
' 4. Program Features:
' print statement
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m8535.dat" ' the micro we are using
$baud = 9600 'set data rate for serial comms
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E = Portc.3 , Rs
= Portc.2
Config Lcd = 40 * 2 'configure lcd screen
' 7. Hardware Aliases
' 8. initialise ports so hardware starts correctly
Porta = &B11111111 'turns off LEDs
Portb = &B11111111 'turns off LEDs
Portc = &B11111111 'turns off LEDs
Portd = &B11111111 'turns off LEDs
'--
' 9. Declare Constants
Const Timedelay = 500
'--
' 10. Declare Variables
Dim Count As Byte
' 11. Initialise Variables
Count = 0
'--
' 12. Program starts here
Print "Can you see this"
Do
 Incr Count
 Cls
 Lcd Count

100

 Print " the value is " ; Count
 Waitms Timedelay
Loop
End 'end program
'--
' 13. Subroutines
'--
' 14. Interrupts
Exercise

Getting text from a PC

'--
' 1. Title Block
' Author: B.Collis
' Date: 22 Aug 03
' Version: 3.0
' File Name: Serialio_Ver3.bas
'--
' 2. Program Description:
' This program prompts for text from the pc over rs232
' and displays it on the local LCD
'
' 3. Hardware Features:
' DS275 connected to the micro TXD and RXD lines. then wired to a DB9F.
' LCD on portc - note the use of 4 bit mode and only 2 control lines
' 4. Program Features:
' input statement
' string variables
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using
$regfile = "m8535.dat" 'the micro we are using
$baud = 9600 'set data rate for serial comms
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E = Portc.3 , Rs
= Portc.2
Config Lcd = 40 * 2 'configure lcd screen
' 7. Hardware Aliases
' 8. initialise ports so hardware starts correctly
Porta = &B11111111 'turns off LEDs
Portb = &B11111111 'turns off LEDs
Portc = &B11111111 'turns off LEDs
Portd = &B11111111 'turns off LEDs
Cls
Cursor Noblink
'--
' 9. Declare Constants

101

Const Timedelay = 2
'--
' 10. Declare Variables
Dim Text As String * 15
' 11. Initialise Variables
Text = ""
'--
' 12. Program starts here
Print "Can you see this"
Do
 Input "type in something" , Text
 Lcd Text
 Wait Timedelay
 Cls
Loop
End 'end program
'--
' 13. Subroutines
'--
' 14. Interrupts

BASCOM Serial Commands

There are a number of different serial commands in Bascom to achieve different functions, find these
in the help file and write in the description of each one.

Print
PrintBin
Config SerialIn
Config SerialOut
Input
InputBin
InputHex
Waitkey
Inkey
IsCharWaiting
$SerialInput2LCD
$SerialInput
$SerialOutput
Spc

Some AVRs have more than one UART (the internal serial device) and it is possible to have software
only serial comms in Bascom and use
Serin, Serout,
Open
Close
Config Waitsuart

102

 Serial IO using Inkey()
'--

' 1. Title Block
' Author: B.Collis
' Date: 22 Aug 03
' Version: 1.0
' File Name: Serialio_Ver1.bas
'--
' 2. Program Description:
' This program receives characters from the RS232/comm/serial port of a PC
' it displays them on the LCD
'
' 3. Hardware Features:
' DS275/MAX232 connected to the micro TXD and RXD lines. then wired to a DB9F.
' LCD on portc - note the use of 4 bit mode and only 2 control lines
' 4. Program Features:
' print statement
' serial interrupt and buffer
' inkey reads the serial buffer to see if a char has arrived
' note that a max of 16 chars can arrive before the program
' automatically prints the message
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using
$regfile = "m8535.dat" 'the micro we are using
$baud = 9600 'set data rate for serial comms
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Pinb.0 = Input
Config Pinb.1 = Input
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
Config Pind.2 = Input
Config Pind.3 = Input
Config Pind.6 = Input

Config Lcd = 40 * 2 'configure lcd screen
Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E = Portc.3 , Rs = Portc.2

Config Serialin = Buffered , Size = 20 'buffer the incoming data
' 7. Hardware Aliases
Sw_1 Alias Pinb.0
Sw_2 Alias Pinb.1
Sw_3 Alias Pind.2
Sw_4 Alias Pind.3
Sw_5 Alias Pind.6
' 8. initialise ports so hardware starts correctly
Porta = &B11111111 'turns off LEDs
Portb = &B11111111 'turns off LEDs
Portc = &B11111111 'turns off LEDs
Portd = &B11111111 'turns off LEDs
'--
' 9. Declare Constants

'--
' 10. Declare Variables
Dim Count As Byte
Dim Char As Byte
Dim Charctr As Byte
Dim Message As String * 16

' 11. Initialise Variables
Count = 0

'--
' 12. Program starts here
Enable Interrupts 'used by the serial buff
Print "Hello PC"
Cls
Lcd "LCD is ok"
Wait 3
Do
 Debounce Sw_1 , 0 , Sub_send1 , Sub 'when switch pressed gosub
 Debounce Sw_2 , 0 , Sub_send2 , Sub 'when switch pressed gosub
 Char = Inkey() 'get a char from the serial buffer
 Select Case Char 'choose what to do with it
 Case 0 : 'do nothing (no char)
 Case 13 : Gosub Dispmessage 'Ascii 13 is CR so show message
 Case Else : Incr Charctr 'keep count of chars
 Message = Message + Chr(char) 'add new char to message
 End Select
 If Charctr > 15 Then 'if 16 chars received
 Gosub Dispmessage 'display the message straight away
 End If
Loop
End 'end program
'--
' 13. Subroutines
Sub_send1:
 Print "this is hard work" 'send it to comm port
Return

Sub_send2:
 Print "not really" 'send it to comm port
Return

Dispmessage:
 Cls
 Lcd Message
 Message = ""
 Charctr = 0
 Incr Count 'send some data to the comm port
 Print "you have sent = " ; Count ; " messages"
Return
'--
' 14. Interrupts

103

 Introduction to I2C
The Inter-IC bus (I2C pronounced "eye-squared-see") was developed by Philips to
communicate between devices in their TV sets. It is now popular and is often used when
short distance communications is needed. It is normally used within equipment to
communicate between pcb's, e.g. main boards and display boards rather than externally to
other equipment.

It is a half duplex synchronous protocol, which means that only one end of the link can talk
at once and that there are separate data and clock lines. The real strength of this protocol
is that many devices can share the bus which reduces the number of I/O lines needed on
microcontrollers, increases the number of devices 1 micro can interface to and many
manufacturers now make I2C devices.

The two lines are SDA - Serial data and SCL - Serial Clock
Communication

The system of communications is not too difficult to follow, the first event is when the
master issues a start pulse causing all slaves to wake up and listen. the master then sends
a 7 bit address which corresponds to one of the slaves on the bus. Then one more bit is
sent that tells the slave whether it is going to be receiving or sending information. This is
then followed by an ACK bit (acknowledge) issued by the receiver, saying it got the
message. Data is then sent over the bus by the transmitter.

The I2C protocol is not too hard to generate using software; Bascom comes with the
software already built in making I2C very easy to use.

I2C Real Time Clocks

These are fantastic devices that connect to the microcontroller and keep the time for you.
Some common devices are the DS1337, DS1678 and DS1307.

104

All three require an external 32.768KHz crystal connected to X1 and X2, 5Volts from your
circuit connected to Vcc, a ground connection (OV) and connection of two interface pins to
the microcontroller, SCL (serial clock) and SDA (serial data).

The DS1678 and DS1307 can have a 3V battery connected to them as backups to keep
the RTC time going even though the circuit is powered down. This will last for a couple of
years and note that it is not rechargeable. There are datasheets on www.maxim-ic.com
website for each of these components as well as many other interesting datasheets on
topics such as battery backup. Each of these devices has other unique features that can be
explored once the basic time functions are operational.

In these RTCs the registers are split into BCD digits. What this means is that instead of
storing seconds as one variable it splits the variable into two parts the units value and the
tens value.
 register 0 Tens of seconds Units of seconds
 register 1 Tens of minutes Units of minutes
 register 2 Tens of hours Units of hours
 register 3 Tens of hours Units of hours
 register .. Tens of ... Units of ...

When we want to put the variable onto an LCD we cannot write lcd seconds as the number
would not be correct. We must first convert the BCD to decimal using
Seconds = Makedec(seconds).
LCD Seconds

The opposite when writing to the time registers

Temp = Makebcd(seconds)
I2cwbyte Temp

105

 Real Time Clocks
These devices are very common in microcontroller products such as microwave ovens,
cellular phones, wrist watches, industrial process controllers etc.

Connecting the RTC

The crystal for the RTC is a 32.768khz crystal. The reason for the strange number is that
32768 is a multiple of 2, so all that is needed to obtain 1 second pulses is to divide the
frequency by two 15 times to get exactly 1 second pulses.

32768
/2 = 16384, /2 = 8192, /2 = 4096, /2 = 2048….2 = 8, /2 = 4, /2 = 2, /2 = 1

Connecting the RTC to the board

Take special note about bending the leads and soldering to
avoid damage to the crystal. Also fix the crystal to the board
somehow to reduce strain on the leads.

The I2C lines SDA and SCL require pull up resistors of 4k7
each to 5V.

The battery is a 3V lithium cell, connect it between 0V and
the battery pin of the RTC. If a battery is not used then the
battery backup pin probably needs connecting to 0V, but
check the datasheet first.

106

Internal Features

First open the datasheet for the DS1307 RTC

There is a memory within the RTC, firstly all the time and dates are stored individually. The
units and the 10s of each number are stored separately.

Here is the layout of the memory within the RTC

ADDRESS Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

00 0 10 Seconds Seconds
01 0 10 Minutes Minutes

AM/PM
02 0 12/24

10Hr
10Hr Hour

03 0 0 0 0 Day of week
04 0 0 10 Date Date

05 0 0 0
10
Mo

Month

06 10 Year Year
07 CONTROL
08

3F

RAM

The date and time Sunday, 24 August 2007 21:48:00 are stored as this

ADDRESS Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

00 0 0
01 4 8
02 2 1
03 0 7
04 2 4
05 0 8
06 0 7
07 2 0

When we read the RTC we send a message to it,
SEND DATA FROM ADDRESS 0 and it sends
0,48,21,07,24,08,7,20..

107

 DS1307 RTC
Here is the process for communicating with the DS1678 RTC followed by the code for one
connected to an 8535.

Step1: configure the hardware and dimension a variable, temp, to hold the data we want to send
to/receive from the 1678. Dimension the variables used to hold the year, month, day, hours, etc.
Don't forget to configure all the compiler directives and hardware such as the LCD, thermistor,
switches etc.

Step2: setup the control register in the RTC, to specify the unique functions we require the 1307
to carry out. This is only ever sent once to the 1307.

Step 3: write a number of subroutines that handle the actual communication with the control and
status registers inside the 1307. These routines make use of the Bascom functions for I2C
communication.

Step 4: write a subroutine that gets the time, hours, date, etc from the 1307.

step 5 : write a subroutine that sets the time, hours, date, etc from the 1307.

step 6: write a program that incorporates these features and puts the time on an LCD.

'--
' 1. Title Block
' Author: B.Collis
' Date: 26 Mar 2005
' File Name: 1307_Ver4.bas
'--
' 2. Program Description:
' use an LCD to display the time
' has subroutines to start clock,write time/date to the rtc,
' read date/time from the rtc, setup the SQW pin at 1Hz
'added subroutines to read and write to ram locations
' LCD on portc - note the use of 4 bit mode and only 2 control lines
' DS1307 SDA=porta.2 SDC=porta.3
'--
' 3. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using
$regfile = "m32def.dat" 'the micro we are using
'--
' 4. Hardware Setups
' setup direction of all ports
Config Porta = Output '
Config Portb = Output '
Config Portc = Output '
Config Portd = Output '
' config 2 wire I2C interface
'Config I2cdelay = 5 ' default slow mode
Config Sda = Porta.2
Config Scl = Porta.3
'Config lcd

108

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E = Portc.3
, Rs = Portc.2
Config Lcd = 16 * 2 'configure lcd screen
'5.Hardware Aliases

'6. Initialise ports so harware starts correctly
Cls 'clears LCD display
Cursor Off 'no cursor

'--
' 7. Declare Constants

'--
' 8. Declare Variables
Dim Temp As Byte
Dim Year As Byte
Dim Month As Byte
Dim Day As Byte
Dim Weekday As Byte
Dim Hours As Byte
Dim Minutes As Byte
Dim Seconds As Byte
Dim Ramlocation As Byte
Dim Ramvalue As Byte
' 9. Initialise Variables
Year = 5
Month = 3
Weekday = 6
Day = 26
Hours = 6
Minutes = 01
Seconds = 0

'--
' 10. Program starts here
Waitms 300
Cls

'these 3 subroutines should be called once and then commented out
'Gosub Start1307clk
'Gosub Write1307ctrl
'Gosub Write1307time

'Gosub Clear1307ram 'need to use once as initial powerup is undefined
'Gosub Writeram
Gosub Readram

'Ramvalue = &HAA
'Call Write1307ram(ramlocation , Ramvalue)

Do
 Gosub Read1307time 'read the rtc
 Locate 1 , 1

109

 Lcd Hours
 Lcd ":"
 Lcd Minutes
 Lcd ":"
 Lcd Seconds
 Lcd " "
 Lowerline
 Lcd Weekday
 Lcd ":"
 Lcd Day
 Lcd ":"
 Lcd Month
 Lcd ":"
 Lcd Year
 Lcd " "
 Waitms 200

Loop

End 'end program
'--
' 11. Subroutines
Read1307time: 'RTC Real Time Clock
 I2cstart
 I2cwbyte &B11010000 'send device code (writing data)
 I2cwbyte 0 'address to start sending from
 I2cstop
 Waitms 50
 I2cstart
 I2cwbyte &B11010001 'device code (reading)
 I2crbyte Seconds , Ack
 I2crbyte Minutes , Ack
 I2crbyte Hours , Ack
 I2crbyte Weekday , Ack
 I2crbyte Day , Ack
 I2crbyte Month , Ack
 I2crbyte Year , Nack
 Seconds = Makedec(seconds)
 Minutes = Makedec(minutes)
 Hours = Makedec(hours)
 Weekday = Makedec(weekday)
 Day = Makedec(day)
 Month = Makedec(month)
 Year = Makedec(year)
 I2cstop
Return

'write the time and date to the RTC
Write1307time:
 I2cstart
 I2cwbyte &B11010000 'send device code (writing data)

110

 I2cwbyte &H00 'send address of first byte to access
 Temp = Makebcd(seconds) 'seconds
 I2cwbyte Temp
 Temp = Makebcd(minutes) 'minutes
 I2cwbyte Temp
 Temp = Makebcd(hours) 'hours
 I2cwbyte Temp
 Temp = Makebcd(weekday) 'day of week
 I2cwbyte Temp
 Temp = Makebcd(day) 'day
 I2cwbyte Temp
 Temp = Makebcd(month) 'month
 I2cwbyte Temp
 Temp = Makebcd(year) 'year
 I2cwbyte Temp
 I2cstop
Return

Write1307ctrl:
 I2cstart
 I2cwbyte &B11010000 'send device code (writing data)
 I2cwbyte &H07 'send address of first byte to access
 I2cwbyte &B10010000 'start squarewav output 1Hz
 I2cstop
Return

Start1307clk:
 I2cstart
 I2cwbyte &B11010000 'send device code (writing data)
 I2cwbyte 0 'send address of first byte to access
 I2cwbyte 0 'enable clock-also sets seconds to 0
 I2cstop
Return

Write1307ram:
'no error checking ramlocation should be from &H08 to &H3F (56 bytes only)
 I2cstart
 I2cwbyte &B11010000 'send device code (writing data)
 I2cwbyte Ramlocation 'send address of byte to access
 I2cwbyte Ramvalue 'send value to store
 I2cstop
Return

'routine to read the contents of one ram location
'setup ramlocation first and the data will be in ramvalue afterwards
'no error checking ramlocation should be from &H08 to &H3F (56 bytes only)
Read1307ram:
 I2cstart
 I2cwbyte &B11010000 'send device code (writing data)

111

 I2cwbyte Ramlocation 'send address of first byte to access
 I2cstop
 Waitms 50
 I2cstart
 I2cwbyte &B11010001 'device code (reading)
 I2crbyte Ramvalue , Nack
 I2cstop
Return

Clear1307ram:
 Ramvalue = 00
 Ramlocation = &H08
 I2cstart
 I2cwbyte &B11010000 'send device code (writing data)
 I2cwbyte Ramlocation 'send address of byte to access
 For Ramlocation = &H08 To &H3F
 I2cwbyte Ramvalue 'send value to store
 Next
 I2cstop
Return

Writeram:
 Ramlocation = &H08
 Ramvalue = 111
 Gosub Write1307ram
 Ramlocation = &H09
 Ramvalue = 222
 Gosub Write1307ram
Return

Readram:
 Cls
 Ramlocation = &H08
 Gosub Read1307ram
 Lcd Ramvalue
 Lcd ":"
 Ramlocation = &H09
 Gosub Read1307ram
 Lcd Ramvalue
 Ramlocation = &H0A
 Gosub Read1307ram
 Lcd ":"
 Lcd Ramvalue
 Wait 5
Return

'--
' 12. Interrupts

112

Arrays
It is easy to dimension variables to store data, however what do you do when you want to
store many similar variables e.g. 50 light level readings over a period of time.

Do you create 50 variables e.g. lightlevel1, lightlevel2, lightlevel3 lightlevel50 ?
The answer is no because it is so difficult to read and write to 50 different variables.

We create an ARRAY type variable. Arrays are a highly important programming structure in
computer science.

e.g Dim lightlevel as byte(50) An array is very easy to read and write in a loop, lightlevel(1)
will be the first value and lightlevel(50) will be the last.

In this exercise you will modify the given program which stores 50 lightlevel readings.

' File Name: arrayV1.bas
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of the micro
$regfile = "m8535.dat" 'our micro, the ATMEGA8535-16PI
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
'config inputs
Config Pina.0 = Input ' ldr
Config Pind.2 = Input 'switch A
Config Pind.3 = Input 'switch B
Config Pind.6 = Input 'switch C
Config Pinb.1 = Input 'switch D
Config Pinb.0 = Input 'switch E
'LCD
Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E =
Portc.3 , Rs = Portc.2
Config Lcd = 40 * 2 'configure lcd screen
'ADC
Config Adc = Single , Prescaler = Auto , Reference = Internal
Start Adc

' 7. Hardware Aliases
Sw_a Alias Pind.6
Sw_b Alias Pind.3
Sw_c Alias Pind.2
Sw_d Alias Pinb.1
Sw_e Alias Pinb.0

' 8. initialise ports so hardware starts correctly
Porta = &B11111100 'turns off LEDs ignores ADC inputs
Portb = &B11111100 'turns off LEDs ignores switches

113

Portc = &B11111111 'turns off LEDs
Portd = &B10110011 'turns off LEDs ignores switches
Cls 'clear lcd screen
'--
' 9. Declare Constants
Const Reading_delay = 100
'--
' 10. Declare Variables
Dim Opmode As Byte
Dim Reading As Word
Dim Lightlevel(50) As Word
Dim Cntr As Byte
' 11. Initialise Variables
Opmode = 0
'--
' 12. Program starts here
Do
 Debounce Sw_a , 0 , Mode_select , Sub
 Debounce Sw_b , 0 , Enter_button , Sub
 Debounce Sw_c , 0 , Prev , Sub
 Debounce Sw_d , 0 , Nxt , Sub
 Select Case Opmode
 Case 0 : Gosub Display_welcome
 Case 1 : Gosub Collect_data
 Case 2 : Gosub Display_data
 Case 3 : Gosub Cont_reading
 Case Else : Gosub Display_mode
 End Select
Loop
End 'end program

'--
' 13. Subroutines

Mode_select:
 Cls 'when mode changes clear the lcd
 If Opmode < 10 Then
 Incr Opmode
 Else
 Opmode = 0
 End If
Return

Display_welcome:
 Locate 1 , 1
 Lcd " Data Collector "
 Lowerline
 Lcd " version 1.0 "
Return

Collect_data:
 Locate 1 , 1
 Lcd " press enter to "

114

 Lowerline
 Lcd "start collection"
Return

Enter_button:
 If Opmode = 1 Then Gosub Start_collecting
Return

Start_collecting:
 Cls
 For Cntr = 1 To 50
 Reading = Getadc(0) 'read lightlevel
 Locate 1 , 1
 Lcd Cntr 'display the counter
 Locate 2 , 1
 Lcd Reading ; " " 'diplay the reading
 Lightlevel(cntr) = Reading ' store reading in array
 Waitms Reading_delay
 Next
 Opmode = 0
Return

Display_data:
 Locate 1 , 1
 Lcd Cntr ; " "
 Locate 2 , 1
 Lcd Lightlevel(cntr) ; " "
Return

Cont_reading:
 Locate 1 , 1
 Lcd "continous readings"
 Locate 2 , 1
 Reading = Getadc(0)
 Lcd Reading ; " "
Return

Prev:
 Decr Cntr
Return
Nxt:
 Incr Cntr
Return

Display_mode:
 Locate 1 , 1
 Lcd Opmode
Return

 1. Fix the bugs with the prev and nxt routines so that they dont go below 0 or above 50.

115

Computer Programming detail

We refer to programming languages as either HIGH LEVEL or LOW LEVEL languages.

 High Level Languages include Basic, C, Java, Haskell, Lisp, Prolog, C++,
and many more.

High level languages are written using text editors such as wordpad or within
an IDE like Bascom. These languages are typically easy for us to
understand, however microcontrollers do not understand these words they

only understand binary numbers which are called Machine Code. A computer
program is ultimately a file containing machine code. Commands written in high
level languages must be compiled into these binary codes.

 Low Level Languages:

Machine code for all microcontrollers and microprocessors (all computers) are groups of
binary digits (bits) arranged in bytes (8 bits) or words of 16, 32 or 64 bits.

Understanding a program in machine code is not at all easy. The AVR
machine code to add the numbers in 2 memory registers is 0001 1100 1010
0111.

To make machine code a little easier to understand we can abbreviate every 4 bits into
hexadecimal numbers; HEX uses numbers 0 to 9 and the letters from a to f.

It is easier on the eyes than machine code but still very difficult to read. It looks like this
1CA7 which is easier to read than is 0001 1100 1010 0111, but no easier to understand!

Program code for micros is not written directly in machine code, abbreviations are used to
refer to the commands, these abbreviations are known as assembly language,
assembler or assembly code which is a representaton of the machine code using
mnemonics (abbreviated words), these are more readable, for example:

add r12 , r7 instead of 1C A7

Assembler is much easier to understand than machine code and is in very
common use for programming microcontrollers, however It does take more
effort to understand the microcontroller internals when programming in
assembler.

116

 AVR Internals – how the microcontroller works

The AVR microcontroller is a complex integrated circuit, with many features as shown
in this block diagram of the AVR’s internal architecture.

There are memory, calculation, control and I/O components.

117

1. The 8bit data bus

This is actually 8 parallel wires that
interconnect the different parts within
the IC. At any one time only one section
of the 8535 is able to transmit on the
bus.

Each device has its own address on the
bus and is told when it can receive and
when it can transmit data.

Note that with 8 bits (1 byte) only
numbers up to 255 may be transmitted
at once, larger numbers need to be
transferred in several sequential
moves.

2. Memory

There are three separate memory areas within the AVR, these are the Flash, the Data
Memory and the EEPROM.

118

In the 8535 the Flash or program memory is 4k of words (8k bytes) of program. The
AVR stores program instructions as 16 bit words. Flash Memory is like a row of
lockers or pigeon holes. When the micro starts it goes to the first one to fetch an
instruction, it carries out that instruction then gets the next one.

The Static RAM is a volatile store for variables within the program.

The EEPROM is a non-volatile store for variables within the program.

The 32 general purpose registers are used by your programs as temporary storage for
data while the microcontroller is working on it (in many micros these are called
accumulators).

If you had a line on your code to add 2 numbers e.g. z=x+y. The micro will get the
contents of ram location X and store it in a register, it will get the contents of ram
location Y and puts it into a second register, it will then add the 2 numbers and result
will go into one of the registers, it then writes the answer from that register into
memory location Z.

The 64 I/O registers are the places where you access the ports, ADC etc and their
control them.

3. Special Function Registers

There are several special high speed memory registers within the microcontroller.

 * Program counter: 16 bits wide, this keeps track of which instruction in flash the
microcontroller is carrying out. After completing an instruction it will be incremented to
point at the next location.
 * Instruction register: As a program instruction is called from program memory it is
held here and decoded.
 * Status Register: holds information relating to the outcome of processing within the
microcontroller, e.g. did the addition overflow?

4. ALU

The arithmetic logic unit carries out mathematical operations on the binary data in the
registers and memory, it can add, subtract, multiply, compare, shift, test, AND, OR,
NOR the data.

A simple program to demonstrate the AVR in operation

Lets take a simple program in Bascom then analyse the equivalent machine code
program and then what happens within the microcontroller itself.
This program below configures all of portc pins as outputs, then counts binary in a
never ending loop on the LEDs on portc.

Config Portc = Output 'all of portc pins as outputs
Dim Temp As Byte 'set memory aside
Temp = 0 'set its initial value to 0
Do
 Incr Temp 'increment memory
 Portc = Temp 'write the memory to port c
Loop 'loop forever

119

End

This is compiled into machine code, which is a long line of binary numbers. However
we don't normally view the numbers as binary, it is shorter to use hexadecimal
notation.

Equivalent machine code to the Bascom code above is:
EF0F (1110 1111 0000 1111)
BB04
E000
BB05
9503
CFFD

These program commands are programmed into the microcontroller starting from the
first address of the FLASH (program memory). When the micro is powered up (or
reset) it starts executing instructions from that first memory location.

The equivalent assembly language to the above machine code

EF 0F SER R16 set all bits in register 16
BB 04 OUT 0x14,R16 store register 16 at address 14 (portc = output)
E0 00 LDI R16,0x00 load immediate register 16 with 0 (temp=0)
BB 05 OUT 0x15,R16 store register 16 at address 15 (port C = temp)
95 03 INC R16 increment register 16 (incr temp)
CF FD RJMP -0x0003 jump back 3 steps in the program (back to BB05)

1. The microcontroller powers up and the program counter is loaded with address

&H000, the first location in the flash (program memory). The first instruction is EF
0F and it is transferred into the instruction register. The program counter is then
incremented by one to 0x01. The instruction is decoded and register 16 is set to
all ones.

2. The next cycle of the clock occurs and BB 04 is moved from the flash into the
instruction register. The program counter is incremented by one to 0x02. The
instruction is decoded and R16 contents are copied to address 0x14 (0x means
hex), this is the i/o register that controls the direction of port c, so now all pins of
portc are outputs.

3. The next cycle of the clock occurs and E0 00 is moved into the instruction register
from the flash. The program counter is incremented by one (to 0x03). The
instruction is decoded and Register 16 is loaded with all 0's.

4. The next cycle of the clock occurs and BB 05 is moved into the instruction register
from the flash. The program counter is incremented by one (to 0x04). The
instruction is decoded and the contents of register 16 (0) are copied to address
0x15 this is the i/o register address for portc itself – so all portc goes low.

5. The next cycle of the clock occurs and 95 03 is moved into the instruction register
from the flash. The program counter is incremented by one (to 0x05). The
instruction is decoded and the contents of register 16 are incremented by 1 (to 01).
This operation requires the use of the ALU as a mathematical calculation is
involved.

6. The next cycle of the clock occurs and CF FD is moved into the instruction register
from the flash. The program counter is incremented by one (to 0x06). CF FD is
decoded and the program counter has 3 subtracted from it (It is 0x06 at the
moment so it becomes 0x03). The sequence jumps back to number three causing
a never ending loop.

120

Interrupts

Microcontrollers are sequential devices, they step through the program code one step
after another faithfully without any problem, it is for this reason that they are used
reliably in all sorts of environments. However what happens if we want to interrupt the
usual program because some exception or irregular event has occurred and we want
our micro to so something else briefly.

For example, a bottling machine is measuring the drink being poured into bottles on a
conveyor. There could be a sensor connected to the conveyor which senses if the bottle
is not there. When the bottle is expected but not there (an irregular event) the code can
be interrupted so that drink is not poured out onto the conveyor.

All microcontrollers/microprocessors have hardware features called interrupts. There
are two interrupt lines on the AVR, these are pind.2 and pind.3 and are called Int0 and
Int1. These are connected to switches on the development pcb. When using the
interrupts the first step is to set up the hardware and go into a normal programming
loop. Then at the end of the code add the interrupt subroutine (called a handler)

The code to use the interrupt is:

'--
' 1. Title Block
' Author: B.Collis
' Date: 9 Aug 2003
' Version: 1.0
' File Name: Interrupt_Ver1.bas
'--
' 2. Program Description:
' This program rotates one flashing led on portb
' when INT0 occurs the flashing led moves left
' when INT1 occurs the flashing led moves right
' 3. Hardware Features
' Eight LEDs on portb
' switches on INT0 and INT1
' 4. Software Features:
' do-loop to flash LED
' Interrupt INT0 and INT1
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m8535.dat" ' the micro we are using
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
Config Pind.2 = Input 'Interrupt 0
Config Pind.3 = Input 'Interrupt 1
On Int0 Int0_handler 'if at anytime an interrupt occurs handle it

121

On Int1 Int1_handler 'if at anytime an interrupt occurs handle it
Enable Int0 Nosave 'enable this specific interrupt to occur
Enable Int1 Nosave 'enable this specific interrupt to occur
Enable Interrupts 'enable micro to process all interrupts
' 7. hardware Aliases
' 8. initialise ports so hardware starts correctly
Porta = &B11111111 'turns off LEDs
Portb = &B11111111 'turns off LEDs
Portc = &B11111111 'turns off LEDs
Portd = &B11111111 'turns off LEDs
'--
' 9. Declare Constants
'--
' 10. Declare Variables
Dim Pattern As Byte
Dim Direction As Bit
' 11. Initialise Variables
Pattern = 254
Direction = 0
'--
' 12. Program starts here
Do
 If Direction = 1 Then
 Rotate Pattern , Left
 Rotate Pattern , Left
 Else
 Rotate Pattern , Right
 Rotate Pattern , Right
 End If
 Portb = Pattern 'only 1 led on
 Waitms 150
 Portb = 255 ' all leds off
 Waitms 50
Loop
'--
' 13. Subroutines
'--
' 14. Interrupts
Int0_handler:
 Direction = 1
Return

Int1_handler:
 Direction = 0
Return

Note that enabling interrupts is a 2 step process both the individual interrupt flag and the
global interrupt flag must be enabled.

Exercise
Change the program so that only one interrupt is used to change the direction.
With the other interrupt change the speed of the pattern.

122

 Polling versus interrupt driven architecture

With the previous keypad circuits we have had to poll (check them often) to see if a key has been
pressed.

Knowing what you know about scanning keypads and interrupts how would this circuit work?

What would the code look like in the interrupt routine? (Refer back to the keypad commands)

123

Timer/Counters
The microcontroller has a number of pre-dimensioned variables (registers in the datasheet) that have
special functions. Three of these variables are Timer0, Timer1, and Timer2.

Timer0 is 8 bits so can count from 0 to 255
Timer1 is 16 bits so can count from 0 to 65535
Timer2 is 8 bits so can count from 0 to 255

The timer/counters can be written to and read from just like ordinary RAM but they have so much
more to offer a designer,

• Timers can count automatically; you just give the microcontroller the command to start i.e.
enable timer1 or to stop i.e. disable timer1.

• You don’t even have to keep track of the count in your program because when a timer
overflows it will call an interrupt subroutine for you, i.e. on ovf1 tim1_isr (on overflow of
timer1 do the subroutine called tim1_isr), remember that overflow occurs when a variable
goes from its maximum value back to 0.

• The rate of counting can be from the microcontrollers internal oscillator, i.e. timer1 = timer, or
it can count pulses from an external pin i.e. timer1 = counter (which is pin B.1 for timer1).

• When counting from the internal oscillator it will count at the R-C/Crystal rate or at a slower
rate we can select such as the oscillator/8 or /64 or /256 or /1024, i.e. prescale = 64 (which is
8,000,000/64 = 125,000 counts per second) or prescale = 1024 (which is 8,000,000/1024 =
7,812 counts per second)

• The timer doesn’t have to start counting from 0 it can be preloaded to start from any number
less than 65535 i.e. timer1 = 58836, so that we can program very accurate time periods.

There are over 60 pages in the datasheet describing all the neat things timers can do!

Here is a block diagram of some of Timer1’s features

Configuring the counter for use

Config Timer1 = Timer, Prescale = 1
On Ovf1 Tim1_isr 'on counter overflow go to Tim1_isr routine
Enable Timer1 ' enable the timer1 individual interrupt
Enable Interrupts 'allow interrupts to occur
dim preload as word
preload = 58836

124

When the 16bit counter overflows (from 65535 to 0) the micro executes the subroutine tim1_isr then
returns to where it left off in the main program.

Tim1_isr:
 Timer1 = preload 'need to preload the counter every time
 piezo = Not piezo 'toggle the piezo to make sound
Return

Connect a piezo between portd.7 and ground

Example Program
'--
' 1. Title Block
' Author: B. Collis
' Date: 18 March 2008
' File Name: TimerV3.bas
'--
' 2. Program Description:
' This program uses a timer to create simple tones on a piezo
'
' 3. Hardware Features:
‘Piezo between portd.7 and ground
‘
' 4. Program Features:
' DO-LOOP to control the program repeating for ever
' use of the Timer1 to generate interrupts for sound timing
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m32def.dat" ' the micro we are using
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'Led’s on Porta
Config Portb = Output 'Led’s on Portb
Config Portc = Output 'Led’s on Portc
Config Portd = Output 'Led’s on Portc
'Configure internal timer1
Config Timer1 = Timer, Prescale = 1
On Ovf1 Tim1_isr

' 7. Hardware Aliases
Piezo Alias Portd.7 'refer to piezo not PORTd.7

' 8. initialise hardware so it starts correctly
Porta = &B11111111 'turns off LEDs
Portb = &B11111111 'turns off LEDs
Portc = &B11111111 'turns off LEDs
Portd = &B11111111 'turns off LEDs
Reset Piezo ' power off the piezo
'--
' 9. Declare Constants
Const Tonedelay = 350 ‘delay between tone changes

125

'--
'10. Declare Variables
Dim Preload As Word ' size word can go up to 65535
' 11. Initialise Variables
Preload = 65
'--
' 12. Program starts here
Timer1=preload ‘start from required count not 0
Enable Timer1 ' enable the timer interrupt
Enable Interrupts ' allow interrupts to occur
Do
 Preload = 65 '55hz
 Waitms Tonedelay
 Preload = 650 '57hz
 Waitms Tonedelay
 Preload = 30000 '108hz
 Waitms Tonedelay
 Preload = 40000 '147hz
 Waitms Tonedelay
 Preload = 50000 '238hz
 Waitms Tonedelay
 Preload = 60000 '640hz
 Waitms Tonedelay
 Preload = 61000 '790hz
 Waitms Tonedelay
 Preload = 62000 '1020hz
 Waitms Tonedelay
 Preload = 64000 '2270hz
 Waitms Tonedelay
 Preload = 65000 '6000hz
 Waitms Tonedelay
 Disable Timer1 ' stop the sound
 Reset Piezo 'make sure power to the piezo is off
 Wait 5
 Enable Timer1 'restart the sound
Loop ' keep going forever

End
'--
' 13. Subroutines
'--
' 14. Interrupt subroutines
Tim1_isr:
 Timer1 = Preload ' reload the counter (how long to wait for)
 Piezo = Not Piezo ' toggle piezo pin to make sound
Return

Exercise

Modify the above code to make a simple siren, use a for-next, do-loop-until or while-wend to control
the changing frequency not lots of separate steps as in the above program

126

 PWM - Pulse Width Modulation
To control the brightness of an LED or speed of a dc motor we could reduce the voltage to it,
however this has several disadvantages especially in terms of power reduction; a better
solution is to turn it on and off rapidly. If the rate is fast enough then the flickering of the LED
or the pulsing of the motor is not noticeable.

If this waveform was applied to a motor it would run at half speed.

If this waveform were applied to an LED it would be ¾ brightness

If this waveform were applied to an motor it would be run at ¼ speed

The AVR timer/counters can be used in PWM mode where the period of the wave or
frequency is kept the same but the pulse width is varied. This is shown in the 3 diagrams, the
period is 2mS for each of the three waveforms, yet the pulsewidth (on time) is different for
each one (other modes do exist however these will not be described yet).

127

PWM control

In the 8535 there are two PWM output pins attached to Timer1, these are:
• OC1A (portD.5)
• OC1B (portD.4)

Each PWM output has independent settings for the pulse width however both will run at the
same frequency.
The 3 PWM modes for timer1 discussed here are the 8, 9 & 10 bit mode.

• In 8 bit mode the counter counts from 0 to 255 then back down to 0.
• In 9 bit mode the counter counts from 0 to 511 then back down to 0.
• In 10 bit mode the counter counts from 0 to 1023 then back down to 0.

The programmer sets a point from 0 to 255 at which the output will change from high to low.
If the value were set to 100 then the output pulse on portd.5 (OC1A) would switch from 0Volts
(0) to 5 Volts (1) as in the next picture.

128

The lines of code to get the above waveforms on OC1A and OC1B would be
• Config Timer1 = Pwm , Pwm = 8 , Compare A Pwm = Clear Up , Compare B Pwm =

Clear up , Prescale = 1024
• Compare1a = 100
• Compare1b = 10

Different values for frequency based upon input crystal and prescale value

 OUTPUT FREQUENCY (Hz) for a crystal frequency of 7,372,800

Prescale Value
1 8 64 256 1024

8 Bit 14,456 1,807 226 56 14
9 Bit 7,214 902 113 28 7

PWM

10 Bit 3604 450 56 14 4

Uses for PWM

A pulse is used to charge a capacitor through a resistor,
when the pulse is high the capacitor will charge, when it
is low the capacitor will discharge, the wider the pulse the
longer the capacitor charges and the higher the voltage
will be.

The width of the pulse determines the average DC
voltage getting to the motor which in turn slows or speeds
up the motor. the advantage of using PWM rather than
reducing the actual voltage is that torque (power) of the
motor maintained at low speeds.

Period - the time from one point in the waveform to the
same point in the next cycle of the waveform.

Frequency - the inverse of the period, if period = 2mS the frequency = 1/0.002 = 500 Hz
(Hertz).
Pulse width - the length of time the pulse is high or on. The 'mark' time.
Duty cycle - the on time of the pulse as a proportion of the whole period of the waveform.

129

 AVR Clock/Oscillator

The AVR executes instructions at the rate set by the system clock (oscillator). There
are a number of different ways that this clock can be set up using either internal
components of the micro or external components. These are:

• Internal Resistor-Capacitor (lesser accuracy)
• External RC
• External Ceramic Resonator
• External Crystal (more accuracy)

 ceramic resonator crystals

Within the micro reprogrammable fuse links

(just like the links on a computer motherboard but set via software) are used to
determine which method is used.
The ATMega8535-16PI clock can range up to 16MHz, however initially it is configured
to run from the internal RC clock at a 1MHz rate.

In BASCOM when the micro is connected
and powered up the settings can be changed
by selecting MANUAL PROGRAM.

 From the window that appears select the LOCK AND FUSE BITS tab. Bascom will
then read the current settings.

The Internal RC
oscillator may be
changed to 8MHz
by selecting the
line in the window
and using the
drop down that
appears to
change it to
8MHz.

After changing the
Fusebit settings
select the Write
FS button. After it
has programmed
the fusebits,
select the

FlashRom tab before exiting
(YOU MAY NEED TO DISABKLE THE JTAG SETTING AS WELL)
 DO NOT CHANGE ANYTHING ELSE, YOU RISK STUFFING UP YOUR MICRO!

130

Assignment – Maths In The Real World
5 numbers are to be entered into memory via the 5 buttons and then displayed on the LCD. Press btn
A to move between the 5 numbers. Btn B to increment the number, btn C to decrement the number.
The maximum number will be 255, the minimum number will be 1. The display looks like this.

The current code is listed below, load it into your microcontroller to see how it works. Then go onto
the next exercise.
'--
' 1. Title Block
' Author: B.Collis
' Date: 1 June 2005
' File Name: numberentryV0.1.bas

'--
' 2. Program Description:
' enters 5 numbers into variables A,B,C,D,E and display them
' 3. Hardware Features:
' LEDS
' LDR, Thermistor on ADC
' 5 switches
' LCD
' 4. Program Features
' do-loop to keep program going forever
' debounce to test switches
' if-then-endif to test variables

'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000
$regfile = "m8535.dat"

'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
'config inputs
Config Pina.0 = Input ' ldr
Config Pind.2 = Input 'switch A
Config Pind.3 = Input 'switch B
Config Pind.6 = Input 'switch C
Config Pinb.1 = Input 'switch D

131

Config Pinb.0 = Input 'switch E

'LCD
Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E = Portc.1 , Rs
= Portc.0
Config Lcd = 40 * 2 'configure lcd screen

' 7. Hardware Aliases
Led3 Alias Portd.4
Sw_c Alias Pind.2
Sw_b Alias Pind.3
Sw_a Alias Pind.6

Spkr Alias Portd.7 'refer to spkr not PORTd.7
Cursor Off
' 8. initialise ports so hardware starts correctly
Porta = &B11111100 'turns off LEDs ignores ADC inputs
Portb = &B11111111 'turns off LEDs activate pullups switches
Portc = &B11111111 'turns off LEDs
Portd = &B11111111 'turns off LEDs activate pullups switches
Cls 'clear lcd screen

'--
' 9. Declare Constants
Const Btndelay = 15

'--
' 10. Declare Variables
Dim State As Byte
Dim A As Byte
Dim B As Byte
Dim C As Byte
Dim D As Byte
Dim E As Byte
Dim Sum As Byte
' 11. Initialise Variables
State = 0
'--

132

' 12. Program starts here
Cls

Do
Debounce Sw_a , 0 , Swa_press , Sub
Debounce Sw_b , 0 , Swb_press , Sub
Debounce Sw_c , 0 , Swc_press , Sub

Loop
End
'--
' 13. Subroutines
Disp_numbrs:

Locate 1 , 1
Lcd A
Locate 1 , 5
Lcd B
Locate 1 , 9
Lcd C
Locate 1 , 13
Lcd D
Locate 2 , 1
Lcd E

Return
Swa_press:

If State < 5 Then
Incr State
Else
State = 1
End If
Gosub Disp_numbrs

Return
Swb_press:

Select Case State
Case 1 : Incr A
Case 2 : Incr B
Case 3 : Incr C
Case 4 : Incr D
Case 5 : Incr E

End Select
Gosub Disp_numbrs
Return
Swc_press:

Select Case State
Case 1 : Decr A
Case 2 : Decr B
Case 3 : Decr C
Case 4 : Decr D
Case 5 : Decr E
End Select
Gosub Disp_numbrs

Return

133

 Math Assignment - Part 1

The program as given to you has a few bugs for you to fix

1. After the power is applied the lcd is blank it should display the 5 numbers.
Write your code here that fixes this

2. The display does not blank any zeros when the numbers go from 100 to 99 and 10 to 9. Fix this
and explain here how you did it.

3. The numbers start at 0, they need to start at 1, fix this and explain here how you did it

4. Make the maximum number that can be entered 200, Write the code here that fixes this.

134

 Math Assignment - Part 2

At the moment the user must press the button to increment or decrement the
numbers one at a time. There is no auto-repeat feature included in the
debounce function. Add some form of repeat feature so that the user can hold
a button and after a short delay the numbers will increase/decrease until the
button is released.

You may want to try and do this using if pin=0 then..... rather than debounce.

Make your routine as generic or portable as possible, so that it could be easily
transferred to other programs.

Explain how your auto-repeat code works.

135

 Math Assignment - Part 3

This program is going to be used by a groundsman to calculate the area of a
piece of land so that he can work out the amount of grass seed to buy. He will
use your program and pace out the 4 sides: a,b,c,d, and the diagonal e.

the formulae to work out the area of a triangle
is:
s= (a+b+e)/2
Area of first triangle = sqroot(s(s-a)(s-b)(s-e))

t= (c+d+e)/2
Area of second triangle = sqroot(t(t-c)(t-d)(t-e))

1. All the calculations must be in one subroutine.
2. You will also need to dimension some temporary variables to help you, e.g.
 dim sngl1 as single, sngl2 as single, sngl3 as single
3. Bascom can only do one arithmetic equation per line so you will need to
break up each equation into individual parts.

Here is half of the routine.
calcarea:

s= a+b
s=s+e
s=s/2
singl1=s-a
s=s*singl1 's(s-a)
singl2=s-b
s=s*singl2 's(s-a)(s-b)
singl3=s-e
s=s*singl3 ' s(s-a)(s-b)(s-e)
area=sqr(s) 'area of the first triangle

return

1. You complete the rest of the equation to work out the area of the second
triangle and then work out the total area for the whole shape.

2. Modify your program to automatically update the lcd with the calculated
area as the grounds man enters the data for each variable. Explain
where in your code you put the changes to make this update happen all
the time.

136

 Math Assignment - Part 4

When the groundsman gets back to the office, he needs to draw a plan of the
area. To do this he needs the angles within the shape.

Using the cosine rule we can calculate these
for him.

U is the angle opposite side E
E2 = A2 + B2 - 2ABcos(U)

V is the angle opposite side E
A2 = E2 + B2 – 2EBcos(V)

 1. calculate each of the 6 angles

 2. U will be in radians, convert each angle to degrees.
 3. display them on the LCD

Write the code for calculating one of the angles below.

137

 Math Assignment - Part 5

When the groundsman has calculated the area and angles, the data must be
stored into eeprom so that it will be there when he goes back to his office.

1. To do this you must declare some new variables e.g. eep_a, eep_b, ... and
dimension these dim eep_A as eram byte.

2. add a state and subroutine to your program which copies the variables
A,B,C.etc into the corresponding eeprom variables eep_a, eep_b, eep_c
etc. Write it below (you may want to change the fuselink in the AVR that
causes the EEPROM to be cleared every time the AVR is reprogrammed)

3. add a state and subroutine to your program that reads the eeprom variables
and copies them into the ram variables. Copy the subroutine here

138

 Math Assignment - Part 6

Create a simple menu that allows the groundsman to select the operation to perform

• enter 5 lengths
• calculate and view the area
• calculate and view the angles
• store the values into eeprom
• read the values from eeprom

You must use a state variable to manage the program flow. Explain your code below.

Extension exercise

Give the groundsman the option to store multiple areas of land

139

 Bascom Keyword Reference
1WIRE
1Wire routines allow you to communicate with Dallas 1wire chips.
1WRESET , 1WREAD , 1WWRITE , 1WSEARCHFIRST , 1WSEARCHNEXT ,1WVERIFY ,
1WIRECOUNT
Conditions
Conditions execute a part of the program depending on the condition
IF-THEN-ELSE-END IF , WHILE-WEND , ELSE , DO-LOOP , SELECT CASE - END SELECT ,
FOR-NEXT
Configuration
Configuration command initialize the hardware to the desired state.
CONFIG , CONFIG ACI , CONFIG ADC , CONFIG BCCARD , CONFIG CLOCK , CONFIG COM1
, CONFIG COM2 , CONFIG DATE , CONFIG PS2EMU , CONFIG ATEMU , CONFIG I2CSLAVE ,
CONFIG GRAPHLCD , CONFIG KEYBOARD , CONFIG TIMER0 , CONFIG TIMER1 , CONFIG
LCDBUS , CONFIG LCDMODE , CONFIG 1WIRE , CONFIG LCD , CONFIG SERIALOUT ,
CONFIG SERIALOUT1 , CONFIG SERIALIN , CONFIG SERIALIN1 , CONFIG SPI , CONFIG
LCDPIN , CONFIG SDA , CONFIG SCL , CONFIG DEBOUNCE , CONFIG WATCHDOG ,
CONFIG PORT , COUNTER0 AND COUNTER1 , CONFIG TCPIP
Conversion
A conversion routine is a function that converts a number or string.
BCD , GRAY2BIN , BIN2GRAY , BIN , MAKEBCD , MAKEDEC , MAKEINT , FORMAT , FUSING
, BINVAL , CRC8 , CRC16 , CRC32 , HIGH , HIGHW , LOW
DateTime
Date Time routines can be used to calculate with date and/or times.
DATE , TIME , DATE$, TIME$, DAYOFWEEK , DAYOFYEAR , SECOFDAY , SECELAPSED ,
SYSDAY , SYSSEC , SYSSECELAPSED
Delay
Delay routines delay the program for the specified time.
WAIT , WAITMS , WAITUS , DELAY
Directives
Directives are special instructions for the compiler. They can override a setting from the IDE.
$ASM , $BAUD , $BAUD1 , $BGF , $BOOT , $CRYSTAL , $DATA , $DBG , $DEFAULT ,
$EEPLEAVE , $EEPROM , $EEPROMHEX , $EXTERNAL , $HWSTACK , $INC , $INCLUDE ,
$INITMICRO , $LCD , $LCDRS , $LCDPUTCTRL , $LCDPUTDATA , $LCDVFO , $LIB ,
$LOADER , $LOADERSIZE , $MAP , $NOINIT , $NORAMCLEAR , $PROG , $PROGRAMMER ,
$REGFILE , $ROMSTART $SERIALINPUT, $SERIALINPUT1 , $SERIALINPUT2LCD ,
$SERIALOUTPUT , $SERIALOUTPUT1 , $SIM , $SWSTACK , $TIMEOUT , $TINY ,
$WAITSTATE , $XRAMSIZE , $XRAMSTART , $XA
File
File commands can be used with AVR-DOS, the Disk Operating System for AVR.
BSAVE , BLOAD , GET , VER , , DISKFREE , DIR , DriveReset , DriveInit , , LINE INPUT ,
INITFILESYSTEM , EOF , WRITE , FLUSH , FREEFILE , FILEATTR , FILEDATE , FILETIME ,
FILEDATETIME , FILELEN , SEEK , KILL , DriveGetIdentity , DriveWriteSector , DriveReadSector
, LOC , LOF , PUT , OPEN , CLOSE
Graphical LCD
Graphical LCD commands extend the normal text LCD commands.
GLCDCMD , GLCDDATA , SETFONT , LINE , PSET , SHOWPIC , SHOWPICE , CIRCLE
I2C
I2C commands allow you to communicate with I2C chips with the TWI hardware or with emulated
I2C hardware.
I2CINIT , I2CRECEIVE , I2CSEND , I2CSTART,I2CSTOP,I2CRBYTE,I2CWBYTE

140

IO
I/O commands are related to the I/O pins of the processor.
ALIAS , BITWAIT , TOGGLE , RESET , SET , SHIFTIN , SHIFTOUT , DEBOUNCE , PULSEIN ,
PULSEOUT
Micro
Micro statements are highly related to the micro processor.
IDLE , POWERDOWN , POWERSAVE , ON INTERRUPT , ENABLE , DISABLE , START , END
, VERSION , CLOCKDIVISION , CRYSTAL , STOP
Memory
Memory functions set or read RAM , EEPROM or flash memory.
WRITEEEPROM , CPEEK , CPEEKH , PEEK , POKE , OUT , READEEPROM , DATA , INP ,
READ , RESTORE , LOOKDOWN , LOOKUP , LOOKUPSTR , CPEEKH , LOAD , LOADADR ,
LOADLABEL , LOADWORDADR , MEMCOPY
Remote Control
Remote control statements send or receive IR commands for remote control.
RC5SEND , RC6SEND , GETRC5 , SONYSEND
RS-232
RS-232 are serial routines that use the UART or emulate a UART.
BAUD , BAUD1, BUFSPACE , ECHO , WAITKEY , ISCHARWAITING , INKEY , INPUTBIN ,
INPUTHEX , INPUT , PRINT , PRINTBIN , SERIN , SEROUT , SPC
SPI
SPI routines communicate according to the SPI protocol with either hardware SPI or software
emulated SPI.
SPIIN , SPIINIT , SPIMOVE , SPIOUT
String
String routines are used to manipulate strings.
ASC , UCASE , LCASE , TRIM , SPLIT , LTRIM , INSTR , SPACE , STRING , RTRIM , LEFT ,
LEN , MID , RIGHT , VAL , STR , CHR , CHECKSUM , HEX , HEXVAL
TCP/IP
TCP/IP routines can be used with the W3100/IIM7000/IIM7010 modules.
BASE64DEC , BASE64ENC , IP2STR , UDPREAD , UDPWRITE , UDPWRITESTR , TCPWRITE
, TCPWRITESTR , TCPREAD , GETDSTIP , GETDSTPORT , SOCKETSTAT ,
SOCKETCONNECT , SOCKETLISTEN , GETSOCKET , CLOSESOCKET , SETTCP ,
GETTCPREGS , SETTCPREGS
Text LCD
Text LCD routines work with the normal text based LCD displays.
HOME , CURSOR , UPPERLINE , THIRDLINE , INITLCD , LOWERLINE , LCD , LCDAT ,
FOURTHLINE , DISPLAY , LCDCONTRAST , LOCATE , SHIFTCURSOR , DEFLCDCHAR ,
SHIFTLCD , CLS
Trig & Math
Trig and Math routines worj with numeric variables.
ACOS , ASIN , ATN , ATN2 , EXP , RAD2DEG , FRAC , TAN , TANH , COS , COSH , LOG ,
LOG10 , ROUND , ABS , INT , MAX , MIN , SQR , SGN , POWER , SIN , SINH , FIX , INCR ,
DECR , DEG2RAD
Various
This section contains all statements that were hard to put into another group
CONST , DBG , DECLARE FUNCTION , DECLARE SUB , DEFXXX , DIM , DTMFOUT , EXIT ,
ENCODER , GETADC , GETKBD , GETATKBD , GETRC , GOSUB , GOTO , LOCAL ,ON VALUE
, POPALL , PS2MOUSEXY , PUSHALL , RETURN , RND , ROTATE , SENDSCAN ,
SENDSCANKBD , SHIFT , SOUND , STCHECK , SUB , SWAP , VARPTR , X10DETECT ,
X10SEND , READMAGCARD , REM , BITS , BYVAL , CALL , #IF , #ELSE , #EN

141

AVR Development Boards we can use

8535 Version 1 8535 Version 1A

142

143

144

 AVR Development Board 2

145

146

147

 ATMEGA Development Board 3

148

149

 ATMEGA16/32 Microcontroller Pin Functions and Connections
Although each port of the large development board is connected to an LED, many of them
have alternative functions and they have other devices connected to them

Port Pin

Second
Fun
ctio

n

Direction Connected to To control/sense

A.0 ADC 0 In

A.1 ADC 1 I / O

A.2 ADC 2 I / O

A.3 ADC 3 I / O

A.4 ADC 4 I / O

A.5 ADC 5 I / O

A.6 ADC 6 I / O

A.7 ADC 7 I / O

B.0 Timer0 Input

B.1 Timer1 Input

B.2 I / O

B.3 I / O

B.4 I / O

B.5 MOSI-Prog I / O

B.6 MISO-Prog I / O

B.7 SCK-Prog I / O

C.0 I / O

C.1 I / O

C.2 Output

C.3 Output

C.4 Output

C.5 Output

C.6 xtal Output

C.7 xtal Output

D.0 I / O

D.1 I / O

D.2 Int0 Input

D.3 Int1 Input

D4 I / O

D.5 I / O

D.6 ICP Input

D.7 I / O

150

 ATMEGA16/32 40pin DIP package– Pin Connections

